Summen af tælleren og nævneren af en brøkdel er 3 mindre end to gange nævnen. Hvis tælleren og nævneren begge falder med 1, bliver tælleren halvdelen af nævneren. Bestem fraktionen?
4/7 Lad os sige, at brøkdelen er a / b, tæller a, nævneren b. Summen af tælleren og nævneren af en brøkdel er 3 mindre end to gange nævneren a + b = 2b-3 Hvis tælleren og nævneren begge falder med 1, bliver tælleren halvdelen af nævneren. a-1 = 1/2 (b-1) Nu gør vi algebraet. Vi starter med ligningen, som vi lige skrev. 2 a- 2 = b-1 b = 2a-1 Fra den første ligning, a + b = 2b-3 a = b-3 Vi kan substituere b = 2a-1 i dette. a = 2a - 1 - 3 -a = -4 a = 4 b = 2a-1 = 2 (4) -1 = 7 Fraktion er a / b = 4/7 Check: * Summen af tælleren (4) og nomenklaturen (7) a
Tælleren for en brøkdel (som er et positivt heltal) er 1 mindre end nævneren. Summen af fraktionen og to gange dens gensidige er 41/12. Hvad er tælleren og nævneren? P.s
3 og 4 Skriver n for heltalstælleren, vi får: n / (n + 1) + (2 (n + 1)) / n = 41/12 Bemærk at når vi tilføjer fraktioner, giver vi dem først en fællesnævner. I dette tilfælde forventer vi naturligvis, at nævneren er 12. Derfor forventer vi både n og n + 1 at være faktor 12. Prøv n = 3 ... 3/4 + 8/3 = (9 + 32) / 12 = 41/12 "" efter behov.
Summen af tre tal er 137. Det andet tal er fire mere end to gange det første tal. Det tredje nummer er fem mindre end tre gange det første tal. Hvordan finder du de tre tal?
Tallene er 23, 50 og 64. Start med at skrive et udtryk for hvert af de tre tal. De er alle dannet fra det første tal, så lad os ringe til det første tal x. Lad det første tal være x Det andet tal er 2x +4 Det tredje tal er 3x -5 Vi får at vide at deres sum er 137. Det betyder, at når vi tilføjer dem alle sammen, bliver svaret 137. Skriv en ligning. (x) + (2x + 4) + (3x - 5) = 137 Braketterne er ikke nødvendige, de er medtaget for at få klarhed. 6x -1 = 137 6x = 138 x = 23 Så snart vi kender det første nummer, kan vi trække de to andre ud af de udtryk, vi skre