Svar:
Forklaring:
Parabola er stedet for et punkt, der bevæger sig, så det er afstand fra et punkt kaldet fokus og dets afstand fra en given linje kaldet directrix er lige.
Lad punktet være
og dens afstand fra directrix
dermed ligning er
og kvadrering
eller
eller
graf ((x ^ 2-18x-50y + 56) (x-9) ^ 2 + (y-12) ^ 2-1) (y + 13) = 0 -76,8, 83,2, -33,44, 46,56 }
Hvad er parabolas ligning med fokus på (0,0) og en directrix af y = -6?
Ligningen er x ^ 2 = 12 (y + 3) Et hvilket som helst punkt (x, y) på parabolen er lige langt fra fokus og directrix Derfor er sqrt ((x-0) ^ 2 + (y-0) ^ 2 ) = y - (- 6) sqrt (x ^ 2 + y ^ 2) = y + 6 x ^ 2 + y ^ 2 = (y + 6) ^ 2 x ^ 2 + y ^ 2 = y ^ 2 + 12y +36 x ^ 2 = 12y + 36 = 12 (y + 3) graf {(x ^ 2-12 (y + 3)) (y + 6) ((x ^ 2) + (y ^ 2) -0,03) = 0 [-20,27, 20,27, -10,14, 10,14]}
Hvad er parabolas ligning med fokus på (10,19) og en directrix af y = 15?
(x-10) ^ 2 = 8 (y-17)> "fra hvilket som helst punkt" (x, y) "på parabolen" "er afstanden til fokuset og direktoren fra dette punkt" lige "farve ) "ved hjælp af afstandsformlen" sqrt ((x-10) ^ 2 + (y-19) ^ 2) = | y-15 | (x-10) ^ 2 + (y-19) ^ 2 = (y-15) ^ 2 rArr (x-10) ^ 2cancel (+ y ^ 2) -38y + 361 = luk
Hvad er vertexformen for parabolas ligning med fokus på (200, -150) og en directrix på y = 135?
Directrix er over fokus, så det her er en parabola, der åbner nedad. Fokusets x-koordinat er også x-koordinatet af vertexet. Så ved vi, at h = 200. Nu er y-koordinaten af vertexet halvvejs mellem directrixen og fokuset: k = (1/2) [135 + (- 150)] = - 15 vertex = (h, k) = (200, -15) Afstanden p mellem directrix og vertex er: p = 135 + 15 = 150 Vertexform: (1 / (4p)) (xh) ^ 2 + k Indsætter værdierne fra oven i vertexformen og husk at dette er nedadgående åbner parabolen, så tegnet er negativt: y = - (1 / (4xx150)) (x-200) ^ 2-15 y = - (1/600) (x-200) ^ 2-15 Håb, der hjalp