Lad mathcal {E} = {[[1], [0]] [[0], [1]]} og mathcal {B} = {[[3], [1]] [[- 2] [1]]} Vektoren vecv i forhold til mathcal {B} er [vecv] _ mathcal {B} = [[2], [1]]. Find vecv i forhold til mathcal {E} [vecv] _ mathcal {B}?
Svaret er = ((4), (3)) Det kanoniske grundlag er E = {((1), (0)), ((0), (1))} Det andet grundlag er B = {( ), (1)), ((- 2), (1)) Matrixen af ændring af basis fra B til E er P = ((3, -2), (1,1)) Vektoren [v] _B = (2), (1)) i forhold til basis B har koordinater [v] _E = ((3, -2), (1,1)) (2), (1)) = ((4) ), (3)) i forhold til basis E Verifikation: P ^ -1 = ((1 / 5,2 / 5), (- 1 / 5,3 / 5)) Derfor er [v] _B = / 5,2 / 5), (- 1 / 5,3 / 5)) ((4), (3)) = ((2), (1))
Lad P (x_1, y_1) være et punkt og lad l være linjen med ligning ax + ved + c = 0.Vis afstanden d fra P-> l er givet af: d = (ax_1 + by_1 + c) / sqrt (a ^ 2 + b ^ 2)? Find afstanden d af punktet P (6,7) fra linjen l med ligning 3x + 4y = 11?
D = 7 Lad l-> a x + b y + c = 0 og p_1 = (x_1, y_1) et punkt ikke på l. Antag at b ne 0 og kalder d ^ 2 = (x-x_1) ^ 2 + (y-y_1) ^ 2 efter at have erstattet y = - (a x + c) / b til d ^ 2 har vi d ^ 2 = ( x - x_1) ^ 2 + ((c + ax) / b + y_1) ^ 2. Det næste trin er at finde d ^ 2 minimumet for x, så vi finder x sådan, at d / (dx) (d ^ 2) = 2 (x - x_1) - (2 a ((c + ax) / b + y_1 )) / b = 0. Dette forekommer for x = (b ^ 2 x_1 - ab y_1-ac) / (a ^ 2 + b ^ 2) Nu erstatter denne værdi i d ^ 2 vi d ^ 2 = + a x_1 + b y_1) ^ 2 / (a ^ 2 + b ^ 2) så d = (c + a x_1 + b y_1) / sqrt (a ^ 2 + b ^ 2) Nu giv
Lad vec (x) være en vektor, sådan at vec (x) = (-1, 1), "og lad" R (θ) = [(costheta, -sintheta), (sintheta, costheta)], der er Rotation Operatør. For theta = 3 / 4pi find vec (y) = R (theta) vec (x)? Lav en skitse, der viser x, y og θ?
Dette viser sig at være en rotation mod uret. Kan du gætte ved hvor mange grader? Lad T: RR ^ 2 | -> RR ^ 2 være en lineær transformation, hvor T (vecx) = R (theta) vecx, R (theta) = [(costheta, sinteta), (sintheta, costheta)], vecx = << -1,1 >>. Bemærk at denne transformation var repræsenteret som transformationsmatrixen R (theta). Hvad det betyder er, da R er rotationsmatrixen, der repræsenterer rotationstransformationen, kan vi formere R ved vecx for at opnå denne transformation. [(costheta, -sintheta), (sintheta, costheta)] xx << -1,1 >> For en MxxK og