Løs ligningen behage hjælp?

Løs ligningen behage hjælp?
Anonim

Svar:

# X = (NPI) / 5, (2n + 1) pi / 2 # Hvor # NrarrZ #

Forklaring:

Her, # Cosx * cos2x * sin3x = (sin2x) / 4 #

# Rarr2 * sin3x 2cos2x * cosx = sin2x #

# Rarr2 * sin3x cos (2x + x) + cos (2x-x) = sin2x #

# Rarr2sin3x cos3x + cosx = sin2x #

# Rarr2sin3x * cos3x + 2sin3x * cosx = sin2x #

# Rarrsin6x + sin (3x + x) + sin (3x-x) = sin2x #

# Rarrsin6x + sin4x = sin2x-sin2x = 0 #

# Rarrsin6x + sin4x = 0 #

# Rarr2sin ((6x + 4x) / 2) * cos ((6x-4x) / 2) = 0 #

# Rarrsin5x * cosx = 0 #

enten, # Sin5x = 0 #

# Rarr5x = NPI #

# Rarrx = (NPI) / 5 #

Eller, # Cosx = 0 #

# X = (2n + 1) pi / 2 #

derfor # X = (NPI) / 5, (2n + 1) pi / 2 # Hvor # NrarrZ #