Svar:
De tre på hinanden følgende ulige heltal er 23, 25, 27.
Forklaring:
Lade
Så,
Lad os oversætte det givne udtryk til algebraisk udtryk:
summen af det første og det tredje heltal er lig med summen af den anden og 25
det betyder:
hvis vi tilføjer det første og tredje heltal, der er:
svarer til summen af den anden og 25:
Ligningen vil blive angivet som:
Løsning af ligningen vi har:
Så det første ulige heltal er 23
Det andet heltal vil være
Det tredje heltal er
Så de tre på hinanden følgende ulige heltal er: 23, 25, 27.
Summen af tre tal er 4. Hvis den første er fordoblet, og den tredje er tredoblet, er summen to mindre end den anden. Fire mere end den første tilføjes til den tredje er to mere end den anden. Find numrene?
1 = 2, 2 = 3, 3 = -1 Opret de tre ligninger: Lad 1. = x, 2. = y og 3. = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "" => 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Eliminer variablen y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Løs for x ved at eliminere variablen z ved at multiplicere EQ. 1 + EQ. 3 ved -2 og tilføjer til EQ. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 "" 3x + 4z = 2 ul (-4x - 4z = -4) -x "" = -2 "" = > x = 2 Løs for z ved at sætte x i EQ. 2 & EQ. 3: EQ. 2 med x: "" 4 - y + 3z
Tre på hinanden følgende ulige heltal er sådanne, at kvadratet af det tredje heltal er 345 mindre end summen af de to første kvadrater. Hvordan finder du heltalene?
Der er to løsninger: 21, 23, 25 eller -17, -15, -13 Hvis det mindste heltal er n, er de andre n + 2 og n + 4 Tolkning af spørgsmålet, vi har: (n + 4) ^ 2 = n ^ 2 + (n + 2) ^ 2-345, som udvider til: n ^ 2 + 8n + 16 = n ^ 2 + n ^ 2 + 4n + 4 - 345 farve (hvid) (n ^ 2 + 8n +16) = 2n ^ 2 + 4n-341 Subtrahering n ^ 2 + 8n + 16 fra begge ender finder vi: 0 = n ^ 2-4n-357 farve (hvid) (0) = n ^ 2-4n + 4 -361 farve (hvid) (0) = (n-2) ^ 2-19 ^ 2 farve (hvid) (0) = ((n-2) -19) ((n-2) +19) farve ) (0) = (n-21) (n + 17) Så: n = 21 "" eller "" n = -17 og de tre heltal er: 21, 23, 25 eller -17, -15,
Du har håndklæder af tre størrelser. Længden af den første er 3/4 m, hvilket udgør 3/5 af længden af den anden. Længden af det tredje håndklæde er 5/12 af summen af længderne af de første to. Hvilken del af den tredje håndklæde er den anden?
Forholdet mellem anden til tredje håndklæde længde = 75/136 Længde af første håndklæde = 3/5 m Længde af andet håndklæde = (5/3) * (3/4) = 5/4 m Summen af de to første håndklæder = 3/5 + 5/4 = 37/20 Længde af det tredje håndklæde = (5/12) * (37/20) = 136/60 = 34/15 m Forholdet mellem anden til tredje håndklæde længde = (5/4 ) / (34/15) = (5 * 15) / (34 * 4) = 75/136