Svar:
Forklaring:
Går at bruge integration af dele to gange.
Til
Lade
Brug nu IBP på det røde udtryk.
Grupper integralerne sammen:
Derfor
Lade
Vi bruger, Regler for integration af dele
Vi tager,
derfor
At finde
Sub.ing dette ind
Nyd matematik.!
Svar:
Forklaring:
Lade
Brug af IBP
Igen af IBP, i
Løsning
Nyd matematik.!
Vis at cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jeg er lidt forvirret, hvis jeg laver Cos²4π / 10 = cos² (π-6π / 10) og cos²9π / 10 = cos² (π-π / 10), bliver den negativ som cos (180 ° -theta) = - costheta in den anden kvadrant. Hvordan går jeg med at bevise spørgsmålet?
Se nedenfor. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Hvordan integrerer du int sqrt (-x ^ 2-6x + 16) / xdx ved hjælp af trigonometrisk substitution?
Se svaret nedenfor:
Hvordan integrerer du int xsin (2x) ved integration efter delmetode?
= 1 / 4sin (2x) - x / 2cos (2x) + C For u (x), v (x) int uv'dx = uv '- int u'vdx u (x) = x betyder u' = 1 v '(x) = sin (2x) betyder v (x) = -1 / 2cos (2x) intxsin (2x) dx = -x / 2cos (2x) + 1 / 2intcos (2x) dx = -x / 2cos (2x) + 1 / 4sin (2x) + C