Vi ved, at når en krop er helt eller delvist nedsænket i en væske, nedsættes vægten, og denne mængde af reduktion er lig med vægten af væsken der forskydes af den.
Således skyldes denne tilsyneladende vægttab på grund af opdriftskraften, der virker, hvilket svarer til vægten af væsken fordrevet af legemet.
Så her er den opdriftskraft, der virker på objektet
Vægten af et objekt på månen. varierer direkte som vægten af objekterne på jorden. Et 90 pund objekt på jorden vejer 15 pund på månen. Hvis et objekt vejer 156 pounds på jorden, hvor meget vejer det på månen?
26 pounds Vægt af det første objekt på jorden er 90 pund, men på månen er det 15 pund. Dette giver os et forhold mellem jordens og månens relative tyngdefeltstyrker, W_M / (W_E). Hvilket giver forholdet (15/90) = (1/6) ca. 0.167 Med andre ord er din vægt på månen 1/6 af hvad det er på jorden. Således multiplicerer vi den tyngre genstands masse (algebraisk) som denne: (1/6) = (x) / (156) (x = masse på månen) x = (156) gange (1/6) x = 26 Så vægten af objektet på månen er 26 pund.
Et objekt med en masse på 8 kg ligger på en rampe ved en hældning på pi / 8. Hvis objektet skubbes op med rampen med en kraft på 7 N, hvad er den mindste koefficient for statisk friktion, der er nødvendig for at objektet skal forblive sat?
Total kraft, der virker på objektet nedad langs planet, er mg sin ((pi) / 8) = 8 * 9,8 * sin ((pi) / 8) = 30N Og påtrykt kraft er 7N opad langs flyet. Så er netto kraft på objektet 30-7 = 23N nedad langs flyet. Så, statisk friktionskraft, der skal fungere for at afbalancere denne mængde kraft, skal handle opad langs flyet. Nu er statisk friktionskraft, der kan virke, mu mg cos ((pi) / 8) = 72,42mu N (hvor mu er koefficienten for statisk friktionskraft) Så 72,42 mu = 23 eller, mu = 0,32
Et objekt med en masse på 5 kg ligger på en rampe ved en hældning på pi / 12. Hvis objektet skubbes op med rampen med en kraft på 2 N, hvad er den mindste koefficient for statisk friktion, der er nødvendig for at objektet skal forblive sat?
Lad os overveje den samlede kraft på objektet: 2N op ad skråningen. mgsin (pi / 12) ~ ~ 12,68 N nedad. Derfor er den samlede kraft 10,68N nedad. Nu er friktionskraften givet som mumgcostheta, som i dette tilfælde forenkler til ~ 47.33mu N så mu = 10.68 / 47.33 ~~ 0.23 Bemærk, hvis der ikke var den ekstra kraft, mu = tantheta