Svar:
Forklaring:
Forenkle
Anvend kvadratrodsregel
Rationaliser nævneren.
Forenkle
Forenkle.
Der er en brøkdel sådan, at hvis 3 tilføjes tælleren, vil dens værdi være 1/3, og hvis 7 trækkes fra nævneren, vil dens værdi være 1/5. Hvad er fraktionen? Giv svaret i form af en brøkdel.
1/12 f = n / d (n + 3) / d = 1/3 => n = d / 3 - 3 n / (d-7) = 1/5 => n = d / 5 - 7/5 => d = 3 = 3 = d / 5 - 7/5 => 5 d - 45 = 3 d - 21 "(multiplicere begge sider med 15)" => 2 d = 24 => d = 12 => n = 1 => f = 1/12
Hvad er den forenklede form for kvadratroden af 10 - kvadratroden af 5 over kvadratroden af 10 + kvadratroden af 5?
(sqrt) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) ) "(sqrt (2) -1) / (sqrt (2) +1) farve (hvid) (" XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) Farve (hvid) (" XXX ") = sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) farve (hvid) ("XXX") = (2-2sqrt2 + 1) / (2-1) farve ( "XXX") = 3-2sqrt (2)
Hvad er kvadratroden af 7 + kvadratroden på 7 ^ 2 + kvadratroden af 7 ^ 3 + kvadratroden på 7 ^ 4 + kvadratroden på 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Det første vi kan gøre er at annullere rødderne på dem med de lige kræfter. Siden: sqrt (x ^ 2) = x og sqrt (x ^ 4) = x ^ 2 for ethvert tal, kan vi bare sige at sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nu kan 7 ^ 3 omskrives som 7 ^ 2 * 7, og at 7 ^ 2 kan komme ud af roden! Det samme gælder for 7 ^ 5, men det er omskrevet som 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) N