Det første vi kan gøre er at afbryde rødderne på dem med de lige kræfter. Siden:
Nu,
Nu sætter vi roden i beviser,
Og sum de tal, der er tilbage til at summe
Der findes en måde at finde den generelle formel for disse summer ved hjælp af geometriske fremskridt, men jeg vil ikke lægge det her, fordi jeg ikke er sikker på, om du har haft det og ikke gør alt for længe.
Hvad er [5 (kvadratroden af 5) + 3 (kvadratroden af 7)] / [4 (kvadratroden af 7) - 3 (kvadratroden af 5)]?
(159 + 29sqrt (35)) / 47 farve (hvid) ("XXXXXXXX") forudsat at jeg ikke har lavet nogen aritmetiske fejl (5 (sqrt (5)) + 3 (sqrt (7))) / Rationaliser nævneren ved at multiplicere med konjugatet: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16,7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Hvad er den forenklede form for kvadratroden af 10 - kvadratroden af 5 over kvadratroden af 10 + kvadratroden af 5?
(sqrt) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) ) "(sqrt (2) -1) / (sqrt (2) +1) farve (hvid) (" XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) Farve (hvid) (" XXX ") = sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) farve (hvid) ("XXX") = (2-2sqrt2 + 1) / (2-1) farve ( "XXX") = 3-2sqrt (2)
Hvad er kvadratroden af 3 + kvadratroden af 72 - kvadratroden på 128 + kvadratroden af 108?
Vi ved at 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, så sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Vi ved, at 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, så sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Vi ved, at 128 = 2 ^ 7 , så sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Forenkling 7sqrt (3) - 2sqrt