To fly forlod en lufthavn ved middagstid. En fløj øst mod en vis hastighed, og den anden fløj vest ved dobbelt så høj hastighed. Flyene var 2700 mi fra hinanden i 3 timer. Hvor hurtigt var hvert fly flyvende?
Hvis vi kalder hastigheden på det første fly v, så har det andet fly en hastighed på 2 * v Så afstanden mellem flyene bliver større ved v + 2 * v = 3 * v hver time. Så om tre timer vil deres afstand være : 3 * 3 * v, som er lig med 2700mi Så 9 * v = 2700-> v = 2700/9 = 300mph Og det andet fly havde to gange så høj hastighed: 600mph
Vand lækker ud af en inverteret konisk tank med en hastighed på 10.000 cm3 / min samtidig med at vandet pumpes i tanken med konstant hastighed Hvis tanken har en højde på 6m og diameteren øverst er 4m og hvis vandstanden stiger med en hastighed på 20 cm / min, når vandets højde er 2m, hvordan finder du den hastighed, hvormed vandet pumpes i tanken?
Lad V være vandmængden i tanken, i cm ^ 3; lad h være dybden / højden af vandet, i cm; og lad r være radius af overflade af vandet (ovenpå), i cm. Da tanken er en inverteret kegle, er det også vandets masse. Da tanken har en højde på 6 m og en radius på toppen af 2 m, betyder lignende trekanter at frac {h} {r} = frac {6} {2} = 3 således at h = 3r. Volumenet af den inverterede kegle vand er så V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Differentier nu begge sider med hensyn til tid t (i minutter) for at få frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} (
Hvis et objekt med ensartet acceleration (eller deceleration) har en hastighed på 3 m / s ved t = 0 og flytter i alt 8 m ved t = 4, hvad var objektets accelerationshastighed?
Forringelse af -0,25 m / s ^ 2 På tidspunktet t_i = 0 havde den indledende hastighed v_i = 3m / s Ved tidspunktet t_f = 4 havde den dækket 8m Så v_f = 8/4 v_f = 2m / s Accelerationshastigheden bestemmes fra a = (v_f-v_i) / (t_f-t_i) a = (2-3) / (4-0) a = -1 / 4m / s ^ 2 a = -0,25 m / s ^ 2 Som en er negativ vi tager det som deceleration på -0,25 m / s ^ 2 Skål