
Svar:
26cm
Forklaring:
vi vil have en trekant med kortere sider (mindre omkreds) og vi har 2 lignende trekanter, da trekanter ligner de tilsvarende sider ville være i forholdet.
For at få trekant af kortere omkreds skal vi bruge den længste side af
Lade
6 cm side svarende til 12 cm side.
derfor,
Så omkredsen af ABC er halvdelen af DEF's omkreds.
perimeter af DEF =
svar 26 cm.
Svar:
Forklaring:
Lignende trekanter har samme form, fordi de har de samme vinkler.
De har forskellige størrelser, men deres sider er i samme forhold.
I
For den mindste omkreds af den anden trekant skal den længste side være
Ny
Omkredsen af
Omkredsen af den anden trekant vil være
Dette kan bekræftes ved at tilføje siderne:
Omkredsen af en trekant er 29 mm. Længden af den første side er to gange længden af den anden side. Længden af den tredje side er 5 mere end længden af den anden side. Hvordan finder du sidelængderne på trekanten?

S_1 = 12 s_2 = 6 s_3 = 11 Omkredsen af en trekant er summen af længderne af alle siderne. I dette tilfælde er det givet, at omkredsen er 29 mm. Så for denne sag: s_1 + s_2 + s_3 = 29 Således løser vi længden af siderne, vi oversætter udsagn i det givne til ligningsformular. "Længden af den første side er to gange længden af den anden side" For at løse dette tildeler vi en tilfældig variabel til enten s_1 eller s_2. For dette eksempel vil jeg lade x være længden af den anden side for at undgå at have fraktioner i min ligning. så
En trekant har siderne A, B og C. Vinklen mellem siderne A og B er (7pi) / 12. Hvis side C har en længde på 16 og vinklen mellem siderne B og C er pi / 12, hvad er længden af side A?

A = 4.28699 enheder Lad mig først betegne siderne med små bogstaver a, b og c Lad mig nævne vinklen mellem side "a" og "b" med / _ C, vinkel mellem side "b" og "c" / " _ A og vinkel mellem side "c" og "a" med / _ B. Bemærk: - tegnet / _ læses som "vinkel". Vi er givet med / _C og / _A. Det er givet den side c = 16. Ved anvendelse af Sines lov (Sin / _A) / a = (sin / _C) / c indebærer Sin (pi / 12) / a = sin ((7pi) / 12) / 16 betyder 0,2558 / a = 0,9659 / 16 betyder 0,2558 / a = 0,06036875 betyder a = 0,25588 / 0,0603687
En trekant har siderne A, B og C. Vinklen mellem siderne A og B er pi / 3. Hvis side C har en længde på 12, og vinklen mellem siderne B og C er pi / 12, hvad er længden af side A?

2 sqrt (6) (sqrt (3) -1) Forudsat vinkler modsat sider A, B og C er henholdsvis / _A, / _B og / _C. Så / _C = pi / 3 og / _A = pi / 12 Brug Sinine Rule (Sin / _A) / A = (Sin / _B) / B = (Sin / _C) / C vi har, (Sin / _A) / A = (Sin / _C) / C (Sin (pi / 12)) / A = (Sin (pi / 3)) / 12 A = (sqrt (3) -1) / (2 sqrt (2)) * 12 * 1 / (sqrt3 / 2) eller, A = 2 sqrt (6) (sqrt (3) -1) eller, A ~ ~ 3.586