
Lad 1st term og fælles forholdet mellem GP er
Ved 1. betingelse
Ved anden betingelse
Subtrahering (2) fra (1)
Opdeling (2) med (3)
Så
De første og andre udtryk for en geometrisk sekvens er henholdsvis de første og tredje udtryk for en lineær sekvens. Den fjerde term af den lineære sekvens er 10, og summen af dens første fem term er 60 Find de første fem udtryk for den lineære sekvens?

{16, 14, 12, 10, 8} En typisk geometrisk sekvens kan repræsenteres som c0a, c_0a ^ 2, cdots, c_0a ^ k og en typisk aritmetisk sekvens som c0a, c_0a + Delta, c0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a som det første element for den geometriske sekvens vi har {(c_0 a ^ 2 = c_0a + 2Delta -> "Første og anden af GS er den første og tredje af en LS"), (c_0a + 3Delta = 10- > "Den fjerde term for den lineære sekvens er 10"), (5c_0a + 10Delta = 60 -> "Summen af dens første fem sigt er 60"):} Løsning for c_0, a, Delta opnår vi c_0 = 64/3 , a = 3/4
Det andet udtryk i en geometrisk sekvens er 12. Det fjerde udtryk i samme sekvens er 413. Hvad er det fælles forhold i denne rækkefølge?

Fælles ratio r = sqrt (413/12) Andet udtryk ar = 12 Fjerde sigt ar ^ 3 = 413 Fælles ratio r = {ar ^ 3} / {ar} r = sqrt (413/12)
Summen af de første fire vilkår for en praktiserende læge er 30, og den for de sidste fire termer er 960. Hvis den første og den sidste periode af lægen er henholdsvis 2 og 512, skal du finde det fælles forhold.?

2root (3) 2. Antag at det fælles forhold (cr) hos den praktiserende læge er r og n ^ (th) sigt er sidste sigt. Da GP'ens første term er 2.: "GP'en er" {2,2r, 2r ^ 2,2r ^ 3, .. 2r ^ (n-4), 2r ^ (n-3) , 2r ^ (n-2), 2r ^ (n-1)}. Givet 2 + 2r + 2r ^ 2 + 2r ^ 3 = 30 ... (stjerne ^ 1) og 2r ^ (n-4) + 2r ^ (n-3) + 2r ^ (n-2) + 2r ^ (n-1) = 960 ... (stjerne ^ 2). Vi ved også, at sidste sigt er 512.:. r ^ (n-1) = 512 .................... (stjerne ^ 3). Nu (stjerne ^ 2) rArr r ^ (n-4) (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960, dvs. (r ^ (n-1)) / r ^ 3 (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960. :. (512) / r ^ 3 (3