Svar:
Forklaring:
En typisk geometrisk sekvens kan repræsenteres som
og en typisk aritmetisk sekvens som
Ringer
Løsning for
Svar:
første 5 udtryk for den lineære sekvens:
Forklaring:
(Ignorerer den geometriske sekvens)
Hvis den lineære serie betegnes som
og den fælles forskel mellem udtryk betegnes som
derefter
Noter det
I betragtning af den fjerde periode af lineære serier er 10
Givet summen af de første 5 udtryk for den lineære sekvens er 60
Multiplicere 1 med 5
derefter trække 3 fra 2
substituere
Derefter følger det af, at de første 5 vilkår er:
Det andet udtryk i en geometrisk sekvens er 12. Det fjerde udtryk i samme sekvens er 413. Hvad er det fælles forhold i denne rækkefølge?
Fælles ratio r = sqrt (413/12) Andet udtryk ar = 12 Fjerde sigt ar ^ 3 = 413 Fælles ratio r = {ar ^ 3} / {ar} r = sqrt (413/12)
Summen af fire på hinanden følgende udtryk i en geometrisk sekvens er 30. Hvis AM af det første og sidste udtryk er 9. Find det fælles forhold.
Lad 1. term og fælles forhold af GP er henholdsvis a og r. Ved første betingelse a + ar + ar ^ 2 + ar ^ 3 = 30 ... (1) Ved anden betingelse a + ar ^ 3 = 2 * 9 .... (2) Subtraherer (2) fra (1) ar + 3 ^ 2 = 12 .... (3) Opdeling (2) med (3) (1 + r ^ 3) / (r + r ^ 2) = 18/12 = 3/2 => r) (1-r + r ^ 2)) / (r (1 + r)) = 3/2 => 2-2r + 2r ^ 2 = 3r => 2r ^ 2-5r + 2 = 0 => 2r ^ 2-4r-r + 2 = 0 => 2r (r-2) -1 (r-2) = 0 => (r-2) (2r-1) = 0 Så r = 2or1 / 2
Summen af tre tal er 4. Hvis den første er fordoblet, og den tredje er tredoblet, er summen to mindre end den anden. Fire mere end den første tilføjes til den tredje er to mere end den anden. Find numrene?
1 = 2, 2 = 3, 3 = -1 Opret de tre ligninger: Lad 1. = x, 2. = y og 3. = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "" => 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Eliminer variablen y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Løs for x ved at eliminere variablen z ved at multiplicere EQ. 1 + EQ. 3 ved -2 og tilføjer til EQ. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 "" 3x + 4z = 2 ul (-4x - 4z = -4) -x "" = -2 "" = > x = 2 Løs for z ved at sætte x i EQ. 2 & EQ. 3: EQ. 2 med x: "" 4 - y + 3z