Svar:
Summen er
Forklaring:
Ths summen af aritmetrisk progression er
Summen af integrere
og summen af heltal delelig med
Du tror måske, at svaret er
De er heltal delelig med
Derfor er svaret på dette spørgsmål
At kende formlen til summen af N heltalene a) Hvad er summen af de første N sammenhængende firkantede heltal, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Summen af de første N sammenhængende kub-heltal Sigma_ (k = 1) ^ N k ^ 3?
For S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Vi har sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 30 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 opløsning for sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni men sum_ {i = 0} ^ ni = ((n + 1) n) / 2 så sum_ {i = 0} ^ ni ^ 2 = +1) ^ 3 / 3-
Hvad er det midterste heltal af 3 på hinanden følgende positive lige heltal, hvis produktet af de mindre to heltal er 2 mindre end 5 gange det største heltal?
8 '3 på hinanden følgende positive lige heltal' kan skrives som x; x + 2; x + 4 Produktet af de to mindre heltal er x * (x + 2) '5 gange det største heltal' er 5 * (x +4):. x * (x + 2) = 5 * (x + 4) - 2 x ^ 2 + 2x = 5x + 20 - 2 x ^ 2 -3x-18 = 0 (x-6) kan udelukke det negative resultat, fordi heltalene angives at være positive, så x = 6 Det midterste heltal er derfor 8
Sig, om følgende er sandt eller falsk og støt dit svar med et bevis: Summen af 5 på hinanden følgende heltal er delelig med 5 (uden resten)?
Se en løsningsproces nedenfor: Summen af 5 sammenhængende heltal er faktisk jævnt delelig med 5! For at vise dette skal vi kalde det første heltal: n Så vil de næste fire heltal være: n + 1, n + 2, n + 3 og n + 4 Sammenføjning af disse fem heltal giver: n + n + 1 + n + 2 + n + 3 + n + 4 => n + n + n + n + n + 1 + 2 + 3 + 4 => 1n + 1n + 1n + 1n + 1n + 1 + 2 + 3 + 4 => + 1 + 1 + 1 + 1) n + (1 + 2 + 3 + 4) => 5n + 10 => 5n + (5xx2) => 5 (n + 2) Hvis vi deler denne sum af 5 fortløbende heltal efter farve (rød) (5) får vi: (5 (n + 2)) / farve (rød) (