En side kommentar til at begynde med: notationen
Nu for derivatet. Dette er en sammensat, så vi vil bruge kædelegemet. Vi skal bruge
Brug af kædelegemet:
Hvad er derivatet af f (x) = sin (cos (tanx))?
F '(x) = - sec ^ 2xsin (tanx) cos (cos (tanx)) f (x) = sin (g (x)) f' (x) = g '(x) cos (g (x)) g (x) = cos (h (x)) g '(x) = - h' (x) sin (h (x)) h (x) = tan (x) h '(x) = sec ^ 2x g '(x) = - sec ^ 2xsin (tanx) g (x) = cos (tanx) f' (x) = - sec ^ 2xsin (tanx) cos (cos (tanx))
Hvad er derivatet af denne funktion y = sin x (e ^ x)?
Dy / dx = e ^ x (cosx + sinx) dy / dx = cosx xx e ^ x + e x xx sinx dy / dx = e ^ x (cosx + sinx)
Hvordan bruger du grænse definitionen af derivatet for at finde derivatet af y = -4x-2?
-4 Definitionen af derivat er angivet som følger: lim (h-> 0) (f (x + h) -f (x)) / h Lad os anvende ovenstående formel på den givne funktion: lim (h-> 0) (f (x + h) -f (x)) / h = lim (h-> 0) (- 4 (x + h) -2 - (- 4x-2)) / h = lim (h-> 0 ) (- 4x-4h-2 + 4x + 2) / h = lim (h-> 0) ((- 4h) / h) Forenkling ved h = lim (h-> 0) (- 4) = -4