Svar:
Der er et lokalt minimum på
Forklaring:
Til
Find derefter
# = (lnx (2-lnx)) / x ^ 2 # .
Test intervallerne
(For testnumre foreslår jeg
Vi finder det
og det
Hvad er den lokale ekstrem, hvis nogen af f (x) = 2ln (x ^ 2 + 3) -x?
F (x) = 2ln (x ^ 2 + 3) -x har et lokalt minimum for x = 1 og et lokalt maksimum for x = 3 Vi har: f (x) = 2ln (x ^ 2 + 3) Funktionen er defineret i alle RR som x ^ 2 + 3> 0 AA x Vi kan identificere de kritiske punkter ved at finde, hvor det første derivat er lig med nul: f '(x) = (4x) / (x ^ 2 + 3) - 1 = - (x ^ 2-4x + 3) / (x ^ 2 + 3) - (x ^ 2-4x + 3) / (x ^ 2 + 3) = 0 x ^ 2-4x + 3 = 0 x = 2 + -sqrt (4-3) = 2 + -1 så de kritiske punkter er: x_1 = 1 og x_2 = 3 Da nævneren altid er positiv, er tegnet af f '(x) det modsatte af tegn på tælleren (x ^ 2-4x + 3) Nu ved vi, at et andenordenspol
Hvad er den lokale ekstrem, hvis nogen, af f (x) = 120x ^ 5 - 200x ^ 3?
Lokalt maksimum på 80 (ved x = -1) og lokalt minimum på -80 (ved x = 1 .f (x) = 120x ^ 5 - 200x ^ 3f '(x) = 600x ^ 4 - 600x ^ 2 = 600x ^ 2 (x ^ 2 - 1) Kritiske tal er: -1, 0 og 1 Skiltet for f 'skifter fra + til - da vi passerer x = -1, så f (-1) = 80 er et lokalt maksimum . (Eftersom f er mærkeligt, kan vi straks konkludere, at f (1) = - 80 er et relativt minimum, og f (0) er ikke et lokalt ekstremt.) Tegnet på f 'ændres ikke, da vi passerer x = 0, så f (0) er ikke et lokalt ekstremt. Tegnet på f 'skifter fra - til + når vi passerer x = 1, så f (1) = -80 er
Hvad er den lokale ekstrem, hvis nogen af f (x) = (lnx-1) ^ 2 / x?
(e ^ 3, 4e ^ -3) Maksimum punkt (e, 0) Minimum punkt