Grafen af kvadratik af denne form er altid en parabola.
Der er et par ting, vi kan fortælle lige fra din ligning:
1) den førende koefficient er 1, hvilket er positivt, så din parabol vil åbne UP.
2) siden parabolen åbner op, er "endeadfærd" begge ender op.
3) siden parabolen åbner op, vil grafen have et minimum ved sin toppunkt.
Lad os nu finde vertexet.Der er flere måder at gøre dette på, herunder at bruge formlen
Erstatter x = 2 og find y-værdien:
Spidsen er fundet ved (2, -4).
Her er grafen:
Jeg vil også foreslå factoring ligningen for at finde x-aflytninger:
Sammentræf? Jeg tror ikke.
Ligningen og grafen for et polynom er vist under grafen når det maksimale, når værdien af x er 3 Hvad er y-værdien af denne maksimale y = -x ^ 2 + 6x-7?
Du skal evaluere polynomet maksimalt x = 3, for enhver værdi af x, y = -x ^ 2 + 6x-7, så erstatning x = 3 får vi: y = - (3 ^ 2) + 6 * 3 -7 = -9 + 18-7 = 18-16 = 2, så værdien af y ved maksimum x = 3 er y = 2 Bemærk at dette ikke viser at x = 3 er maksimum
Sammenlign grafen for g (x) = (x-8) ^ 2 med grafen for f (x) = x ^ 2 (overordnet grafen). Hvordan vil du beskrive sin transformation?
G (x) er f (x) skiftet til højre med 8 enheder. Givet y = f (x) Når y = f (x + a) forskydes funktionen til venstre af en enhed (a> 0) eller forskydes til højre ved hjælp af en enhed (a <0) g (x) = (x-8) ^ 2 => f (x-8) Dette resulterer i, at f (x) skiftes til højre med 8 enheder.
Skitse grafen for y = 8 ^ x med angivelse af koordinaterne for punkter, hvor grafen krydser koordinatakserne. Beskriv fuldstændig transformationen, som transformerer grafen Y = 8 ^ x til grafen y = 8 ^ (x + 1)?
Se nedenunder. Eksponentielle funktioner uden vertikal transformation krydser aldrig x-aksen. Som sådan vil y = 8 ^ x ikke have x-aflytninger. Det vil have en y-intercept på y (0) = 8 ^ 0 = 1. Grafen skal ligne følgende. Grafen af y = 8 ^ (x + 1) er grafen for y = 8 ^ x flyttet 1 enhed til venstre, så det er y- aflytning ligger nu ved (0, 8). Du kan også se, at y (-1) = 1. graf {8 ^ (x + 1) [-10, 10, -5, 5]} Forhåbentlig hjælper dette!