Svar:
Inflexionspunktet er:
Forklaring:
1 - Først skal vi finde den anden afledte af vores funktion.
2 - For det andet svarer vi til derivatet
Næste,
Nu skal vi udtrykke det i formularen
Hvor
Ved at ligne koefficienterne for
og
Og
Men vi kender identiteten,
derfor
I en nøddeskal,
Så den generelle løsning af
Så punkterne af inflexion vil være ethvert punkt, der har koordinater:
Vi har to tilfælde at løse med, Sag 1
Sag 2
Vis at cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jeg er lidt forvirret, hvis jeg laver Cos²4π / 10 = cos² (π-6π / 10) og cos²9π / 10 = cos² (π-π / 10), bliver den negativ som cos (180 ° -theta) = - costheta in den anden kvadrant. Hvordan går jeg med at bevise spørgsmålet?
Se nedenfor. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Hvordan verificerer du [sin ^ 3 (B) + cos ^ 3 (B)] / [sin (B) + cos (B)] = 1-sin (B) cos (B)?
Bevis under ekspansion af ^ ^ + b ^ 3 = (a + b) (a ^ 2 ab + b ^ 2), og vi kan bruge dette: (sin ^ 3B + cos ^ 3B) / (sinB + cosB) = sinBcosB + cos ^ 2B = sin ^ 2B + cos ^ 2B-sinBcosB (identitet: sin ^ 2x + cos ^ 2x = 1) = 1-sinBcosB
Hvordan finder du grænsen for [(sin x) * (sin ^ 2 x)] / [1 - (cos x)] som x nærmer sig 0?
Udfør nogle konjugerede multiplikationer og forenkle for at få lim_ (x-> 0) (sinx * sin ^ 2x) / (1-cosx) = 0 Direkte substitution producerer ubestemt form 0/0, så vi bliver nødt til at prøve noget andet. Prøv at multiplicere (sinx * sin ^ 2x) / (1-cosx) med (1 + cosx) / (1 + cosx): (sinx * sin ^ 2x) / (1-cosx) * (1 + cosx) / + cosx) = (sinx * sin ^ 2x (1 + cosx)) / (1-cosx) (1 + cosx)) = (sinx * sin ^ 2x (1 + cosx)) / (1-cos ^ 2x) Denne teknik er kendt som konjugatmultiplikation, og det virker næsten hver gang. Tanken er at bruge forskellen på kvadrater ejendom (a-b) (a + b) = a ^