Summen af tælleren og nævneren af en brøkdel er 3 mindre end to gange nævnen. Hvis tælleren og nævneren begge falder med 1, bliver tælleren halvdelen af nævneren. Bestem fraktionen?
4/7 Lad os sige, at brøkdelen er a / b, tæller a, nævneren b. Summen af tælleren og nævneren af en brøkdel er 3 mindre end to gange nævneren a + b = 2b-3 Hvis tælleren og nævneren begge falder med 1, bliver tælleren halvdelen af nævneren. a-1 = 1/2 (b-1) Nu gør vi algebraet. Vi starter med ligningen, som vi lige skrev. 2 a- 2 = b-1 b = 2a-1 Fra den første ligning, a + b = 2b-3 a = b-3 Vi kan substituere b = 2a-1 i dette. a = 2a - 1 - 3 -a = -4 a = 4 b = 2a-1 = 2 (4) -1 = 7 Fraktion er a / b = 4/7 Check: * Summen af tælleren (4) og nomenklaturen (7) a
Tælleren for en brøkdel (som er et positivt heltal) er 1 mindre end nævneren. Summen af fraktionen og to gange dens gensidige er 41/12. Hvad er tælleren og nævneren? P.s
3 og 4 Skriver n for heltalstælleren, vi får: n / (n + 1) + (2 (n + 1)) / n = 41/12 Bemærk at når vi tilføjer fraktioner, giver vi dem først en fællesnævner. I dette tilfælde forventer vi naturligvis, at nævneren er 12. Derfor forventer vi både n og n + 1 at være faktor 12. Prøv n = 3 ... 3/4 + 8/3 = (9 + 32) / 12 = 41/12 "" efter behov.
Der er en brøkdel sådan, at hvis 3 tilføjes tælleren, vil dens værdi være 1/3, og hvis 7 trækkes fra nævneren, vil dens værdi være 1/5. Hvad er fraktionen? Giv svaret i form af en brøkdel.
1/12 f = n / d (n + 3) / d = 1/3 => n = d / 3 - 3 n / (d-7) = 1/5 => n = d / 5 - 7/5 => d = 3 = 3 = d / 5 - 7/5 => 5 d - 45 = 3 d - 21 "(multiplicere begge sider med 15)" => 2 d = 24 => d = 12 => n = 1 => f = 1/12