Lad den almindelige forskel på en AP af heltal være
Eventuelle fire på hinanden følgende vilkår for progressionen kan være repræsenteret som
Så summen af produkterne af disse fire udtryk og fjerde kraft af den fælles forskel
Produktet af fire på hinanden følgende heltal er deleligt med 13 og 31? hvad er de fire på hinanden følgende heltal, hvis produktet er så lille som muligt?
Da vi har brug for fire på hinanden følgende heltal, vil vi have brug for LCM som en af dem. LCM = 13 * 31 = 403 Hvis vi ønsker at produktet skal være så lille som muligt, ville vi have de andre tre heltal 400, 401, 402. Derfor er de fire på hinanden følgende heltal 400, 401, 402, 403. Forhåbentlig hjælper!
Tre mænd trækker på reb knyttet til et træ, den første mand udøver en kraft på 6,0 N nord, den anden en kraft på 35 N øst og den tredje 40 N mod syd. Hvad er størrelsen af den resulterende kraft på træet?
48,8 "N" på et lager på 134,2 ^ @ Først kan vi finde den resulterende kraft af mændene trækker i nord og syd retning: F = 40-6 = 34 "N" due south (180) Nu kan vi finde den resulterende af denne kraft og mannen trækker øst. Anvendelse af Pythagoras: R ^ 2 = 34 ^ 2 + 35 ^ 2 = 2381: .R = sqrt (2381) = 44,8 "N" Vinkelet theta fra lodret er givet af: tantheta = 35/34 = 1,0294: .theta = 45,8 ^ @ Ved at tage N som nul grader er dette på et lager på 134,2 ^ @
"Lena har 2 på hinanden følgende heltal.Hun bemærker, at deres sum er lig med forskellen mellem deres kvadrater. Lena vælger yderligere 2 på hinanden følgende heltal og bemærker det samme. Bevis algebraisk, at dette gælder for 2 fortløbende heltal?
Venligst henvis til forklaringen. Husk at de på hinanden følgende heltal adskiller sig med 1. Derfor, hvis m er et helt tal, skal det efterfølgende heltal være n + 1. Summen af disse to heltal er n + (n + 1) = 2n + 1. Forskellen mellem deres kvadrater er (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, som ønsket! Føl Mathens Glæde.!