Området for dette trig-problem er relateret til amplituden. Amplituden for denne funktion er 1. Denne funktion vil svinge mellem
Sortimentet er
Vis at cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jeg er lidt forvirret, hvis jeg laver Cos²4π / 10 = cos² (π-6π / 10) og cos²9π / 10 = cos² (π-π / 10), bliver den negativ som cos (180 ° -theta) = - costheta in den anden kvadrant. Hvordan går jeg med at bevise spørgsmålet?
Se nedenfor. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Sammenlign grafen for g (x) = (x-8) ^ 2 med grafen for f (x) = x ^ 2 (overordnet grafen). Hvordan vil du beskrive sin transformation?
G (x) er f (x) skiftet til højre med 8 enheder. Givet y = f (x) Når y = f (x + a) forskydes funktionen til venstre af en enhed (a> 0) eller forskydes til højre ved hjælp af en enhed (a <0) g (x) = (x-8) ^ 2 => f (x-8) Dette resulterer i, at f (x) skiftes til højre med 8 enheder.
Skitse grafen for y = 8 ^ x med angivelse af koordinaterne for punkter, hvor grafen krydser koordinatakserne. Beskriv fuldstændig transformationen, som transformerer grafen Y = 8 ^ x til grafen y = 8 ^ (x + 1)?
Se nedenunder. Eksponentielle funktioner uden vertikal transformation krydser aldrig x-aksen. Som sådan vil y = 8 ^ x ikke have x-aflytninger. Det vil have en y-intercept på y (0) = 8 ^ 0 = 1. Grafen skal ligne følgende. Grafen af y = 8 ^ (x + 1) er grafen for y = 8 ^ x flyttet 1 enhed til venstre, så det er y- aflytning ligger nu ved (0, 8). Du kan også se, at y (-1) = 1. graf {8 ^ (x + 1) [-10, 10, -5, 5]} Forhåbentlig hjælper dette!