I betragtning af det her
Så højden af
så vi har et projektil projiceret fra højden
Så kan vi sige, om det tog tid
Givet
så,
Og langs vandret retning ved hjælp af
så,
eller,
så,
Antag en bold er sparket vandret ud for et bjerg med en indledende hastighed på 9,37 m / s. Hvis bolden rejser en vandret afstand på 85,0 m, hvor høj er bjerget?
403,1 "m" Først får du flyvetid fra den vandrette bevægelsesdel, hvor hastigheden er konstant: t = s / v = 85 / 9,37 = 9,07 "s" Nu kan vi få højden ved hjælp af: h = 1/2 "g" t ^ 2: .h = 0.5xx9.8xx9.07 ^ 2 = 403,1 "m"
Du kaster en bold ind i luften fra en højde på 5 fods hastighed af bolden er 30 fod per sekund. Du fanger bolden 6 meter fra jorden. Hvordan bruger du modellen 6 = -16t ^ 2 + 30t + 5 for at finde ud af, hvor længe bolden var i luften?
T ~ ~ 1,84 sekunder Vi bliver bedt om at finde den samlede tid t bolden var i luften. Vi løser således i det væsentlige for t i ligningen 6 = -16t ^ 2 + 30t + 5. For at løse for t omskriver vi ligningen ovenfor ved at indstille den til nul, fordi 0 repræsenterer højden. Nul højde betyder, at bolden er på jorden. Vi kan gøre dette ved at trække 6 fra begge sider 6cancel (farve (rød) (- 6)) = - 16t ^ 2 + 30t + 5farve (rød) (- 6) 0 = -16t ^ 2 + 30t-1 At løse t vi skal bruge den kvadratiske formel: x = (-b pm sqrt (b ^ 2-4ac)) / (2a) hvor a = -16, b = 30, c = -1
En superhelt lancerer sig fra toppen af en bygning med en hastighed på 7,3 m / s i en vinkel på 25 over vandret. Hvis bygningen er 17 m høj, hvor langt vil han rejse vandret før man når jorden? Hvad er hans endelige hastighed?
Et diagram af dette ville se sådan ud: Hvad jeg ville gøre er at liste, hvad jeg kender. Vi vil tage negative som nede og venstre som positive. h = "17 m" vecv_i = "7,3 m / s" veca_x = 0 vecg = - "9,8 m / s" ^ 2 Deltavecy =? Deltavecx =? vecv_f =? DEL ONE: ASCENSION Hvad jeg ville gøre er at finde, hvor toppen er at bestemme Deltavecy, og derefter arbejde i et frit fald scenario. Bemærk at ved apexen, vecv_f = 0, fordi personen ændrer retning på grund af tyngdekraftenes dominans ved at formindske den vertikale komponent af hastigheden gennem nul og ind i negativer