Svar:
Forklaring:
Først og fremmest er kendskabet til "tid til at flyve" ikke nyttigt.
Motionens to love er:
og
Men hvis du løser systemet af de to ligninger, kan du finde en tredje lov virkelig nyttig i de tilfælde, hvor du ikke har tid, eller du ikke skal finde den.
Det er muligt at fjerne den parabolske bevægelse i de to bevægelseskomponenter, den vertikale (decelereret bevægelse) og den vandrette (ensartet bevægelse). I denne øvelse behøver vi kun den certifikat.
Den vertikale komponent af starthastigheden er:
Den endelige hastighed har at være
Jacks højde er 2/3 af Leslie's højde. Leslie's højde er 3/4 af Lindsay's højde. Hvis Lindsay er 160 cm høj, find Jacks højde og Leslie's højde?
Leslie's = 120cm og Jacks højde = 80cm Leslie's højde = 3 / annullér4 ^ 1xxcancel160 ^ 40/1 = 120cm Jacks højde = 2 / annullér3 ^ 1xxcancel120 ^ 40/1 = 80cm
Vand lækker ud af en inverteret konisk tank med en hastighed på 10.000 cm3 / min samtidig med at vandet pumpes i tanken med konstant hastighed Hvis tanken har en højde på 6m og diameteren øverst er 4m og hvis vandstanden stiger med en hastighed på 20 cm / min, når vandets højde er 2m, hvordan finder du den hastighed, hvormed vandet pumpes i tanken?
Lad V være vandmængden i tanken, i cm ^ 3; lad h være dybden / højden af vandet, i cm; og lad r være radius af overflade af vandet (ovenpå), i cm. Da tanken er en inverteret kegle, er det også vandets masse. Da tanken har en højde på 6 m og en radius på toppen af 2 m, betyder lignende trekanter at frac {h} {r} = frac {6} {2} = 3 således at h = 3r. Volumenet af den inverterede kegle vand er så V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Differentier nu begge sider med hensyn til tid t (i minutter) for at få frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} (
Hvis ingen eksterne kræfter virker på et bevægeligt objekt, vil det? a) bevæg langsommere og langsommere, indtil den endelig stopper. b) komme til en brat stop. c) Fortsæt med at bevæge sig med samme hastighed. d) ingen af ovenstående
(c) Objektet vil afmontere bevægelse med samme hastighed. Dette er bragt ud af Newtons første lov om bevægelse.