Svar:
Lokal ekstrem:
Forklaring:
Find derivatet
Sæt
Dette er dine kritiske værdier og potentielle lokale ekstrem.
Tegn en talelinje med disse værdier.
Indsæt værdier inden for hvert interval
hvis
hvis
Når funktionen ændres fra negativ til positiv og er kontinuert på det tidspunkt, er der et lokalt minimum; og omvendt.
Kritiske værdier:
<------
Indsæt værdier mellem disse intervaller:
Du får en:
Positiv værdi på
Negativ på
Positiv på
Positiv på
Negativ på
Dit lokale minimum vil være, når:
Hvad er den lokale ekstrem, hvis nogen af f (x) = 2ln (x ^ 2 + 3) -x?
F (x) = 2ln (x ^ 2 + 3) -x har et lokalt minimum for x = 1 og et lokalt maksimum for x = 3 Vi har: f (x) = 2ln (x ^ 2 + 3) Funktionen er defineret i alle RR som x ^ 2 + 3> 0 AA x Vi kan identificere de kritiske punkter ved at finde, hvor det første derivat er lig med nul: f '(x) = (4x) / (x ^ 2 + 3) - 1 = - (x ^ 2-4x + 3) / (x ^ 2 + 3) - (x ^ 2-4x + 3) / (x ^ 2 + 3) = 0 x ^ 2-4x + 3 = 0 x = 2 + -sqrt (4-3) = 2 + -1 så de kritiske punkter er: x_1 = 1 og x_2 = 3 Da nævneren altid er positiv, er tegnet af f '(x) det modsatte af tegn på tælleren (x ^ 2-4x + 3) Nu ved vi, at et andenordenspol
Hvad er den lokale ekstrem, hvis nogen, af f (x) = 120x ^ 5 - 200x ^ 3?
Lokalt maksimum på 80 (ved x = -1) og lokalt minimum på -80 (ved x = 1 .f (x) = 120x ^ 5 - 200x ^ 3f '(x) = 600x ^ 4 - 600x ^ 2 = 600x ^ 2 (x ^ 2 - 1) Kritiske tal er: -1, 0 og 1 Skiltet for f 'skifter fra + til - da vi passerer x = -1, så f (-1) = 80 er et lokalt maksimum . (Eftersom f er mærkeligt, kan vi straks konkludere, at f (1) = - 80 er et relativt minimum, og f (0) er ikke et lokalt ekstremt.) Tegnet på f 'ændres ikke, da vi passerer x = 0, så f (0) er ikke et lokalt ekstremt. Tegnet på f 'skifter fra - til + når vi passerer x = 1, så f (1) = -80 er
Hvad er den lokale ekstrem, hvis nogen af f (x) = 2x + 15x ^ (2/15)?
Lokalt maksimum på 13 ved 1 og lokalt minimum 0 ved 0. Domæne af f er RRf '(x) = 2 + 2x ^ (- 13/15) = (2x ^ (13/15) +2) / x ^ (13/15) f '(x) = 0 ved x = -1 og f' (x) eksisterer ikke ved x = 0. Både -1 og 9 er i f-domænet, så de er begge kritiske tal. Første derivat test: On (-oo, -1), f '(x)> 0 (for eksempel ved x = -2 ^ 15) On (-1,0), f' (x) <0 (for eksempel ved x = -1 / 2 ^ 15) Derfor er f (-1) = 13 et lokalt maksimum. På (0, oo), f '(x)> 0 (brug nogen stor positiv x) Så f (0) = 0 er et lokalt minimum.