Forholdet mellem radius,
Volumenet af keglen af vand er givet ved formlen
eller i form af bare
Vi får at vide det
Hvornår
vanddybden ændrer sig med en hastighed på
Udtrykt med hensyn til hvor hurtigt vandniveauet falder, når vanddybden er
Dyrehaven har to vandtanke, der lækker. En vandtank indeholder 12 gal vand og lækker ved en konstant hastighed på 3 g / time. Den anden indeholder 20 gal vand og lækker ved en konstant hastighed på 5 g / time. Hvornår vil begge tanke have samme mængde?
4 timer. Første tank har 12g og taber 3g / h Anden tank har 20g og taber 5g / hr Hvis vi repræsenterer tiden med t, kan vi skrive dette som en ligning: 12-3t = 20-5t Løsning for t 12-3t = 20-5t => 2t = 8 => t = 4: 4 timer. På nuværende tidspunkt vil begge tanke være tømt samtidigt.
Vand lækker ud af en inverteret konisk tank med en hastighed på 10.000 cm3 / min samtidig med at vandet pumpes i tanken med konstant hastighed Hvis tanken har en højde på 6m og diameteren øverst er 4m og hvis vandstanden stiger med en hastighed på 20 cm / min, når vandets højde er 2m, hvordan finder du den hastighed, hvormed vandet pumpes i tanken?
Lad V være vandmængden i tanken, i cm ^ 3; lad h være dybden / højden af vandet, i cm; og lad r være radius af overflade af vandet (ovenpå), i cm. Da tanken er en inverteret kegle, er det også vandets masse. Da tanken har en højde på 6 m og en radius på toppen af 2 m, betyder lignende trekanter at frac {h} {r} = frac {6} {2} = 3 således at h = 3r. Volumenet af den inverterede kegle vand er så V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Differentier nu begge sider med hensyn til tid t (i minutter) for at få frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} (
En kvinde på en cykel accelererer fra hvile med konstant hastighed i 10 sekunder, indtil cyklen bevæger sig ved 20m / s. Hun opretholder denne hastighed i 30 sekunder, så bremserne skal decelerere med konstant hastighed. Cyklen kommer til ophør 5 sekunder senere.hjælp?
"Del a) acceleration" a = -4 m / s ^ 2 "del b) den samlede tilbagelagte distance er" 750 mv = v_0 + ved "Del a) I de sidste 5 sekunder har vi:" 0 = 20 + 5 a = > a = -4 m / s ^ 2 "del b)" "I de første 10 sekunder har vi:" 20 = 0 + 10 a => a = 2 m / s ^ 2 x = v_0 t + ved ^ 2 / 2 => x = 0 t + 2 * 10 ^ 2/2 = 100 m "I de næste 30 sekunder har vi konstant hastighed:" x = vt => x = 20 * 30 = 600 m " have: "x = 20 * 5 - 4 * 5 ^ 2/2 = 50 m =>" Total afstand "x = 100 + 600 + 50 = 750 m" Bemærkning: "" 20 m / s