Svar:
og måske)
Forklaring:
Hvis
# X + y = 14 #
Hvis forskellen mellem tiene ciffer
# x-y = 2 #
Hvis
# "Nummer" = 10x + y #
Summen af cifrene i et tocifret tal er 10. Hvis cifrene er omvendt, dannes et nyt tal. Det nye nummer er en mindre end to gange det oprindelige tal. Hvordan finder du det originale nummer?
Originaltallet var 37 Lad m og n være henholdsvis de første og andet cifre af det oprindelige nummer. Vi får at vide at: m + n = 10 -> n = 10-m [A] Nu. For at danne det nye nummer skal vi vende om tallene. Da vi kan antage, at begge tal skal være decimalt, er værdien af det oprindelige tal 10xxm + n [B] og det nye tal er: 10xxn + m [C] Vi er også fortalt, at det nye tal er to gange det oprindelige tal minus 1 . Kombinerer [B] og [C] -> 10n + m = 2 (10m + n) -1 [D] Erstatter [A] i [D] -> 10 (10-m) + m = 20m +2 -m) -1 100-10m + m = 20m + 20-2m-1 100-9m = 18m + 19 27m = 81m = 3 Da m + n
Summen af cifrene i et tocifret tal er 9. Hvis cifrene er omvendt, er det nye tal 9 mindre end tre gange det oprindelige tal. Hvad er det oprindelige nummer? Tak skal du have!
Nummeret er 27. Lad enhedscifret være x og ti cifre er y så x + y = 9 ........................ (1) og nummer er x + 10y Ved omvendt cifrene bliver det 10x + y Da 10x + y er 9 mindre end tre gange x + 10y, har vi 10x + y = 3 (x + 10y) -9 eller 10x + y = 3x + 30y -9 eller 7x-29y = -9 ........................ (2) Multiplicere (1) med 29 og tilføje til (2) vi få 36x = 9xx29-9 = 9xx28 eller x = (9xx28) / 36 = 7 og dermed y = 9-7 = 2 og nummeret er 27.
Summen af to på hinanden følgende tal er 77. Forskellen på halvdelen af det mindre antal og en tredjedel af det større tal er 6. Hvis x er det mindre tal og y er det større tal, hvilke to ligninger repræsenterer summen og forskellen på numrene?
X + y = 77 1 / 2x-1 / 3y = 6 Hvis du vil vide numrene, kan du fortsætte med at læse: x = 38 y = 39