Svar:
Orthocentret for trekanten ABC er
Forklaring:
Fremgangsmåden for at finde orthocenteret er:
1. Find ligningerne af 2 segmenter af trekanten (i vores eksempel finder vi ligningerne for AB og BC)
-
Når du har ligningerne fra trin # 1, kan du finde hældningen af de tilsvarende vinkelrette linjer.
-
Du vil bruge de skråninger, du har fundet fra trin # 2, og det tilsvarende modsatte vertex for at finde ligningerne af de 2 linjer.
-
Når du har ligningen for de 2 linjer fra trin # 3, kan du løse det tilsvarende x og y, hvilket er koordinaterne for orthocenteret.
Givet (A (3,1), B (4,5), C (2,2)
Hældning af AB
Hældning af
Tilsvarende hældning af BC
Hældning af
Ligning af
Ligning af
Løsning af ligninger (1), (2), får vi koordinaterne til Orthocenter H.
Basen af en trekant af et givet område varierer omvendt som højden. En trekant har en base på 18cm og en højde på 10cm. Hvordan finder du højden på en trekant med samme område og med en base på 15cm?
Højde = 12 cm Området af en trekant kan bestemmes med ligningsområdet = 1/2 * base * højde Find området for den første trekant ved at erstatte målingen af trekanten i ligningen. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 Lad højden af den anden trekant = x. Så området ligningen for den anden trekant = 1/2 * 15 * x Da områdene er ens, 90 = 1/2 * 15 * x gange begge sider ved 2. 180 = 15x x = 12
Hvad er orthocenteret af en trekant med hjørner på (1, 2), (5, 6) og (4, 6) #?
Trekantens orthocenter er: (1,9) Lad triangleABC være trekanten med hjørner ved A (1,2), B (5,6) og C (4,6) Lad bar (AL), stang (BM) og bar (CN) er højderne på side bar (BC), bar (AC) og bar (AB). Lad (x, y) være skæringspunktet mellem tre højder. Hældning af stang (AB) = (6-2) / (5-1) = 1 => Hældning af stang (CN) = - 1 [:. højde] og bar (CN) passerer gennem C (4,6) Så, equn. af bar (CN) er: y-6 = -1 (x-4) dvs. farve (rød) (x + y = 10 .... til (1) Nu, hældning af stang (AC) = ) / (4-1) = 4/3 => Hældning af stang (BM) = - 3/4 [:. Højde] og sta
Hvad er orthocenteret af en trekant med hjørner på (1, 3), (5, 7) og (2, 3) #?
Ortocentre i trekant ABC er H (5,0) Lad trianglen være ABC med hjørner ved A (1,3), B (5,7) og C (2,3). så er hældningen af "line" (AB) = (7-3) / (5-1) = 4/4 = 1 Lad bar (CN) _ | _bar (AB):. Hældningen af "linje" CN = -1 / 1 = -1, og den passerer gennem C (2,3). : .Equn. af "line" CN er: y-3 = -1 (x-2) => y-3 = -x + 2 ie x + y = 5 ... til (1) Nu er hældningen af "linje" (BC) = (7-3) / (5-2) = 4/3 Lad bar (AM) _ | _bar (BC):. Hældningen af "linje" AM = -1 / (4/3) = - 3/4, og den passerer gennem A (1,3). : .Equn. af "line" A