Svar:
Definer afstanden mellem grafen og punktet som en funktion og find minimum.
Pointen er
Forklaring:
For at vide, hvor tæt de er, skal du kende afstanden. Den euklidiske afstand er:
hvor Δx og Δy er forskellene mellem de 2 punkter. For at være det nærmeste punkt skal dette punkt have den mindste afstand. Derfor sætter vi:
Vi skal nu finde mindst denne funktion:
Nævneren er altid positiv som en kvadratrodsfunktion. Tælleren er positiv, når:
Så funktionen er positiv, når
Endelig er det punkt, hvor mindst afstanden fra (4,0) observeres,:
På en skriftlig del af hendes kørselstest svarede Sarah 84% af spørgsmålene korrekt. Hvis Sarah besvarede 42 spørgsmål korrekt, hvor mange spørgsmål var der på køreprøven?
Det samlede antal spørgsmål på kørselsfarven (blå) (= 50 Lad det samlede antal spørgsmål være = x Som svar på spørgsmålet: Sara svarede 84% af de samlede spørgsmål korrekt = 84% * (x) = 84 / 100 * (x) Nu svarer denne 84% korrekt til 42 spørgsmål, 84/100 * (x) = 42 x = (42 * 100) / 84 x = (4200) / 84 farve (blå) = 50
Hvad er forløbet af antallet af spørgsmål for at nå et andet niveau? Det ser ud som om antallet af spørgsmål stiger hurtigt, da niveauet stiger. Hvor mange spørgsmål til niveau 1? Hvor mange spørgsmål til niveau 2 Hvor mange spørgsmål til niveau 3 ......
Tja, hvis du ser i FAQ finder du, at tendensen for de første 10 niveauer er givet: Jeg antager, at hvis du virkelig ville forudsige højere niveauer, passer jeg til antallet af karma-punkter i et emne til det niveau du nåede , og fik: hvor x er niveauet i et givet emne. På samme side, hvis vi antager, at du kun skriver svar, så får du bb (+50) karma for hvert svar du skriver. Nu, hvis vi regraferer dette som antallet af svar skrevet i forhold til niveauet, så: Husk på, at dette er empiriske data, så jeg siger ikke, at dette faktisk er, hvordan det er. Men jeg synes det er en god
Din lærer giver dig en prøve på 100 point, der indeholder 40 spørgsmål. Der er 2 point og 4 point spørgsmål på testen. Hvor mange af hver type spørgsmål er på prøve?
Antal 2 mark spørgsmål = 30 Antal 4 mark spørgsmål = 10 Lad x være antallet af 2 mark spørgsmål Lad være med at være antallet af 4 mark spørgsmål x + y = 40 ------------- - (1) 2x + 4y = 100 --------------- (2) Løs ligning (1) for yy = 40-x Erstatter y = 40-x i ligning (2) 2x +4 (40-x) = 100 2x + 160-4x = 100 2x -4x = 100-160 -2x = -60 x = (- 60) / (- 2) = 30 Substitutent x = 30 i ligning (1 ) 30 + y = 40 y = 40-30 = 10 Antal 2 mark spørgsmål = 30 Antal 4 mark spørgsmål = 10