Hvordan bruger du binomial formel til at udvide [x + (y + 1)] ^ 3?

Hvordan bruger du binomial formel til at udvide [x + (y + 1)] ^ 3?
Anonim

Svar:

# X ^ 3 + y ^ 3 + 3x ^ 2y + 3xy ^ 2 + 3x ^ 2 + 3y ^ 2 + 6xy + 3x + 3y + 1 #

Forklaring:

Denne binomial har formularen # (A + b) ^ 3 #

Vi udvider binomialet ved at anvende denne ejendom:

# (A + b) ^ 3 = a ^ 3 + 3a ^ 2b + 3ab ^ 2 + b ^ 3 #.

Hvor i givet binomial # A = x # og # B = y + 1 #

Vi har:

# X + (y + 1) ^ 3 = #

# x ^ 3 + 3x ^ 2 (y + 1) + 3x (y + 1) ^ 2 + (y + 1) ^ 3 # bemærke det som (1)

I ovenstående udvidelse har vi stadig to binomials at udvide

# (Y + 1) ^ 3 # og # (Y + 1) ^ 2 #

Til # (Y + 1) ^ 3 # vi er nødt til at bruge ovennævnte cubed ejendom

# (Y + 1) ^ 3 = y ^ 3 + 3y ^ 2 + 3y + 1 #. Bemærk det som (2)

Til # (Y + 1) ^ 2 # vi skal bruge kvadreret af summen der siger:

# (a + b) ^ 2 = a ^ 2 + 2ab + b ^ 2 #

# (Y + 1) ^ 2 = y ^ 2 + 2y + 1 #. Bemærk det som (3)

Ved at erstatte (2) og (3) i ligning (1) har vi:

# X ^ 3 + 3x ^ 2 (y + 1) + 3x (y + 1) ^ 2 + (y + 1) ^ 3 #

# = X ^ 3 + 3x ^ 2 (y + 1) + 3x (y ^ 2 + 2y + 1) + (y ^ 3 + 3y ^ 2 + 3y + 1) #

# = X ^ 3 + 3x ^ 2y + 3x ^ 2 + 3xy ^ 2 + 6xy + 3x + y ^ 3 + 3y ^ 2 + 3y + 1 #

Vi skal tilføje de tilsvarende udtryk, men i dette polynom har vi ikke lignende udtryk, vi kan ordne vilkårene.

Dermed, # X + (y + 1) ^ 3 = x ^ 3 + y ^ 3 + 3x ^ 2y + 3xy ^ 2 + 3x ^ 2 + 3y ^ 2 + 6xy + 3x + 3y + 1 #