
Svar:
Forklaring:
Erstatning
Svar:
Forklaring:
Identitet:
substituere
subtraktion
Forenkle:
Lade
faktor:
Men
Dette er i kvadrant II, vi har også en vinkel i kvadrant III:
Indsamling af løsninger:
Hvordan bevise (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?

Se nedenfor. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2cos ^ 2 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) synd (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Bevis det: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?

Bevis under anvendelse af konjugater og trigonometrisk version af Pythagorean Theorem. Del 1 sqrt (1-cosx) / (1 + cosx)) farve (hvid) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) farve (hvid) ("XXX") = sqrt (1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) farve (hvid) ("XXX") = (1-cosx) / sqrt 2x) Del 2 Tilsvarende sqrt ((1 + cosx) / (1-cosx) farve (hvid) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) Del 3: Kombination af udtrykkene sqrt (1-cosx) / (1 + cosx)) + sqrt (1 + cosx) / (1-cosx) farve (hvid) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) + (1 + cosx) / sqrt (1-cos ^ 2x
Hvordan beviser du (cosx / (1 + sinx)) + ((1 + sinx) / cosx) = 2secx?
Konverter venstre side til udtryk med fællesnævner og tilføj (konvertere cos ^ 2 + sin ^ 2 til 1 langs vejen); forenkle og referere til definitionen af sec = 1 / cos (cos (x) / (1 + sin (x)) + ((1 + sin (x)) / cos (x)) = + 1 + 2sin (x) + sin ^ 2 (x)) / (cos (x) (1 + sin (x) = (2 + 2sin (x)) / ) = 2 / cos (x) = 2 * 1 / cos (x) = 2sec (x)