
Svar:
Bevis nedenfor
ved hjælp af konjugater og trigonometrisk version af Pythagoras sætning.
Forklaring:
Del 1
Del 2
Tilsvarende
Del 3: Kombination af vilkårene
Hvordan bevise (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?

Se nedenfor. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2cos ^ 2 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) synd (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Tallene x, y z tilfredsstiller abs (x + 2) + abs (y + 3) + abs (z-5) = 1 bevis derefter at abs (x + y + z) <= 1?

Se venligst Forklaring. Husk det, | (a + b) | le | a | + | b | ............ (stjerne). :. | x + y + z | = | (x + 2) + (y + 3) + (z-5) | le | (x + 2) | + | (y + 3) | + | ) | .... [fordi, (stjerne)], = 1 ........... [fordi "givet"). dvs. | (x + y + z) | le 1.
Kan nogen hjælpe med at bekræfte denne trigidentitet? (SiNx + cosx) ^ 2 / sin ^ 2x-cos ^ 2x = sin ^ 2x-cos ^ 2x / (sinx-cosx) ^ 2

Det er verificeret nedenfor: (sinx + cosx) ^ 2 / (sin ^ 2x-cos ^ 2x) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => (annuller ((sinx + cosx) ) (sinx + cosx)) / (annuller (sinx + cosx)) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => ((sinx + cosx) sinx-cosx)) / (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => farve (grøn) ((sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2