Svar:
Det første nummer er
Forklaring:
Vi vil gøre ordet problem til en ligning for at gøre det nemmere at løse. Jeg skal forkorte "første nummer" til
OG:
Vores to ligninger fra de to bits information er:
Lad os nu ændre den første ligning, så vi kan løse en af variablerne.
Nu erstatte den i anden ligning og løse:
Nu som vi ved
KONTROLLERE:
Summen af tre tal er 137. Det andet tal er fire mere end to gange det første tal. Det tredje nummer er fem mindre end tre gange det første tal. Hvordan finder du de tre tal?
Tallene er 23, 50 og 64. Start med at skrive et udtryk for hvert af de tre tal. De er alle dannet fra det første tal, så lad os ringe til det første tal x. Lad det første tal være x Det andet tal er 2x +4 Det tredje tal er 3x -5 Vi får at vide at deres sum er 137. Det betyder, at når vi tilføjer dem alle sammen, bliver svaret 137. Skriv en ligning. (x) + (2x + 4) + (3x - 5) = 137 Braketterne er ikke nødvendige, de er medtaget for at få klarhed. 6x -1 = 137 6x = 138 x = 23 Så snart vi kender det første nummer, kan vi trække de to andre ud af de udtryk, vi skre
To gange et tal minus et andet tal er -1. To gange det andet tal tilføjet til tre gange det første tal er 9. Hvordan finder du de to tal?
Det første tal er 1 og det andet tal er 3. Vi betragter det første tal som x og andet som y. Fra dataene kan vi skrive to ligninger: 2x-y = -1 3x + 2y = 9 Fra den første ligning danner vi en værdi for y. 2x-y = -1 Tilføj y til begge sider. 2x = -1 + y Tilføj 1 til begge sider. 2x + 1 = y eller y = 2x + 1 I anden ligning erstattes y med farve (rød) ((2x + 1)). 3x + 2farve (rød) ((2x + 1)) = 9 Åbn parenteserne og forenkle. 3x + 4x + 2 = 9 7x + 2 = 9 Træk 2 fra begge sider. 7x = 7 Opdel begge sider med 7. x = 1 I den første ligning skal du erstatte x med farve (rød)
To gange et tal tilføjet til et andet tal er 25. Tre gange det første tal minus det andet tal er 20. Hvordan finder du tallene?
(x, y) = (9,7) Vi har to tal, x, y. Vi kender to ting om dem: 2x + y = 25 3x-y = 20 Lad os tilføje disse to ligninger sammen, som vil annullere y: 5x + 0y = 45 x = 45/5 = 9 Vi kan nu erstatte i x-værdien til en af de oprindelige ligninger (jeg vil begge dele) for at komme til y: 2x + y = 25 2 (9) + y = 25 18 + y = 25 y = 7 3x-y = 20 3 (9) -y = 20 27-y = 20 y = 7