Svar:
Forklaring:
De første og andre udtryk for en geometrisk sekvens er henholdsvis de første og tredje udtryk for en lineær sekvens. Den fjerde term af den lineære sekvens er 10, og summen af dens første fem term er 60 Find de første fem udtryk for den lineære sekvens?
{16, 14, 12, 10, 8} En typisk geometrisk sekvens kan repræsenteres som c0a, c_0a ^ 2, cdots, c_0a ^ k og en typisk aritmetisk sekvens som c0a, c_0a + Delta, c0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a som det første element for den geometriske sekvens vi har {(c_0 a ^ 2 = c_0a + 2Delta -> "Første og anden af GS er den første og tredje af en LS"), (c_0a + 3Delta = 10- > "Den fjerde term for den lineære sekvens er 10"), (5c_0a + 10Delta = 60 -> "Summen af dens første fem sigt er 60"):} Løsning for c_0, a, Delta opnår vi c_0 = 64/3 , a = 3/4
To afløbsrør, der arbejder sammen, kan dræne en pool om 12 timer. Arbejde alene ville det mindre rør tage 18 timer længere end det større rør for at dræne poolen. Hvor længe ville det tage det lille rør alene at dræne poolen?
Tiden for det mindre rør til at dræne puljen er 36 timer, og tiden til det større rør til at dræne poolen er 18 timer. Lad det antal timer, det mindre rør kan dræne en pool være x, og lad det antal timer, det større rør kan dræne en pool være (x-18). Om en time ville det mindre rør dræne 1 / x af poolen, og det større rør ville dræne 1 / (x-18) af poolen. Om 12 timer ville det mindre rør dræne 12 / x af poolen, og det større rør ville dræne 12 / (x-18) af poolen. De kan dræne en pool om 12 timer sammen, farve
Hvordan bruger du de kraftreducerende formler til at omskrive udtrykket sin ^ 8x i forhold til cosins første magt?
Sin ^ 8x = 1/128 [35-56cos2x + 28cos4x-8cos6x + cos8x] rarrsin ^ 8x = [(2sin ^ 2x) / 2] ^ 4 = 1/16 [{1-cos2x} ^ 2] ^ 2 = 1 / 16 [1-2cos2x + cos ^ 2 (2x)] ^ 2 = 1/16 [(1-2cos2x) ^ 2 + 2 * (1-2cos2x) * cos ^ 2 (2x) + (cos ^ 2 (2x )] 2 ^ = 1/16 [1-4cos2x + 4cos ^ 2 (2x) + 2cos ^ 2 (2x) -4cos ^ 3 (2x) + ((2cos ^ 2 (2x)) / 2) ^ 2] = 1/16 [1-4cos2x + 6cos ^ 2 (2x) - (3cos (2x) + cos6x) + ((1 + cos4x) / 2) ^ 2] = 1/16 [1-4cos2x + 3 * {1 + cos4x} - (3cos (2x) + cos6x) + ((1 + 2cos4x + cos ^ 2 (4x)) / 4)] = 1/16 [1-4cos2x + 3 + 3cos4x-3cos (2x) -cos6x + (2 + 4cos4x + 2cos ^ 2 (4x)) / 8)] = 1/16 [4-7cos2x + 3cos4x-cos6x + ((2 + 4cos