Svar:
Forklaring:
Lade
Udvidelse af højre side får vi
Ligestilling får vi
dvs.
eller
eller
der svarer til koefficienten fra x til 0 og ligende konstanter, får vi
Løsning for A & B får vi
At erstatte integrationen får vi
=
=
=
=
Hvordan integrerer du int 1 / (x ^ 2 (2x-1)) ved hjælp af partielle fraktioner?
2ln | 2x-1 | -2ln | x | + 1 / x + C Vi skal finde A, B, C sådan at 1 / (x ^ 2 (2x-1)) = A / x + B / x ^ 2 + C / (2x-1) for alle x. Multiplicere begge sider med x ^ 2 (2x-1) for at få 1 = Akse (2x-1) + B (2x-1) + Cx ^ 2 1 = 2Ax ^ 2-Axe + 2Bx-B + Cx ^ 2 1 = Ligningskoefficienter giver os {(2A + C = 0), (2B-A = 0), (- B = 1):} Og således har vi A = -2, B = -1, C = 4. Ved at erstatte dette i den indledende ligning får vi 1 / (x ^ 2 (2x-1)) = 4 / (2x-1) -2 / x-1 / x ^ 2 Integrer den nu termen med termen int 4 / (2x-1) dx-int 2 / x dx-int 1 / x ^ 2 dx for at få 2ln | 2x-1 | -2ln | x | + 1 / x + C
Hvordan integrerer du int (x-9) / ((x + 3) (x-6) (x + 4)) ved hjælp af partielle fraktioner?
Du skal nedbryde (x-9) / ((x + 3) (x-6) (x + 4)) som en delfraktion. Du leder efter a, b, c i RR sådan at (x-9) / ((x + 3) (x-6) (x + 4)) = a / (x + 3) + b / -6) + c / (x + 4). Jeg skal vise dig, hvordan du finder en eneste, fordi b og c findes på nøjagtig samme måde. Du multiplicerer begge sider med x + 3, hvilket vil gøre det forsvinde fra nævneren på venstre side og få det til at vises ud for b og c. (x-9) / (x + 3) (x-6) (x + 4)) = a / (x + 3) + b / (x-6) + c / (x + 4) iff -9) / (x-6) (x + 4)) = a + (b (x + 3)) / (x-6) + (c (x + 3)) / (x + 4). Du vurderer dette ved x-3 for at f
Hvordan finder du int (x + 1) / (x (x ^ 2-1)) dx ved hjælp af partielle fraktioner?
Du forsøger at opdele den rationelle funktion i en sum, der vil være meget let at integrere. Først og fremmest: x ^ 2 - 1 = (x-1) (x + 1). Delvis fraktion nedbrydning gør det muligt at gøre det: (x + 1) / (x (x ^ 2 - 1)) = (x + 1) / (x (x-1) (x + 1)) = 1 / (x-1)) = a / x + b / (x-1) med a, b i RR, som du skal finde. For at finde dem skal du multiplicere begge sider ved et af polynomierne til venstre for ligestillingen. Jeg viser et eksempel til dig, den anden koefficient findes på samme måde. Vi finder en: vi må multiplicere alt med x for at få den anden koefficient forsvinde. 1