Svar:
Forklaring:
Dette kvalificerer ikke som en lokal ekstremt.
For at løse rødderne af denne kubiske funktion bruger vi Newton-Raphson-metoden:
Dette er en iterativ proces, der vil tage os tættere og tættere på funktionsroten. Jeg indbefatter ikke den lange proces her, men når jeg er kommet til den første rod, kan vi udføre lang division og løse den resterende kvadratiske let for de to andre rødder.
Vi får følgende rødder:
Vi udfører nu en første afledetest og prøver værdier til venstre og højre for hver rod for at se, hvor derivatet er positivt eller negativt.
Dette vil fortælle os hvilket punkt der er maksimalt og hvilket minimum.
Resultatet bliver som følger:
Du kan se et af minimumene i nedenstående graf:
Følgende visning viser maksimum og det andet minimum:
Hvad er den lokale ekstrem, hvis nogen af f (x) = 2ln (x ^ 2 + 3) -x?
F (x) = 2ln (x ^ 2 + 3) -x har et lokalt minimum for x = 1 og et lokalt maksimum for x = 3 Vi har: f (x) = 2ln (x ^ 2 + 3) Funktionen er defineret i alle RR som x ^ 2 + 3> 0 AA x Vi kan identificere de kritiske punkter ved at finde, hvor det første derivat er lig med nul: f '(x) = (4x) / (x ^ 2 + 3) - 1 = - (x ^ 2-4x + 3) / (x ^ 2 + 3) - (x ^ 2-4x + 3) / (x ^ 2 + 3) = 0 x ^ 2-4x + 3 = 0 x = 2 + -sqrt (4-3) = 2 + -1 så de kritiske punkter er: x_1 = 1 og x_2 = 3 Da nævneren altid er positiv, er tegnet af f '(x) det modsatte af tegn på tælleren (x ^ 2-4x + 3) Nu ved vi, at et andenordenspol
Hvad er den lokale ekstrem, hvis nogen, af f (x) = 120x ^ 5 - 200x ^ 3?
Lokalt maksimum på 80 (ved x = -1) og lokalt minimum på -80 (ved x = 1 .f (x) = 120x ^ 5 - 200x ^ 3f '(x) = 600x ^ 4 - 600x ^ 2 = 600x ^ 2 (x ^ 2 - 1) Kritiske tal er: -1, 0 og 1 Skiltet for f 'skifter fra + til - da vi passerer x = -1, så f (-1) = 80 er et lokalt maksimum . (Eftersom f er mærkeligt, kan vi straks konkludere, at f (1) = - 80 er et relativt minimum, og f (0) er ikke et lokalt ekstremt.) Tegnet på f 'ændres ikke, da vi passerer x = 0, så f (0) er ikke et lokalt ekstremt. Tegnet på f 'skifter fra - til + når vi passerer x = 1, så f (1) = -80 er
Hvad er den lokale ekstrem, hvis nogen af f (x) = 2x + 15x ^ (2/15)?
Lokalt maksimum på 13 ved 1 og lokalt minimum 0 ved 0. Domæne af f er RRf '(x) = 2 + 2x ^ (- 13/15) = (2x ^ (13/15) +2) / x ^ (13/15) f '(x) = 0 ved x = -1 og f' (x) eksisterer ikke ved x = 0. Både -1 og 9 er i f-domænet, så de er begge kritiske tal. Første derivat test: On (-oo, -1), f '(x)> 0 (for eksempel ved x = -2 ^ 15) On (-1,0), f' (x) <0 (for eksempel ved x = -1 / 2 ^ 15) Derfor er f (-1) = 13 et lokalt maksimum. På (0, oo), f '(x)> 0 (brug nogen stor positiv x) Så f (0) = 0 er et lokalt minimum.