Svar:
Orthocenter koordinater
Forklaring:
Hældning af linjesegment BC
Hældning af
Højdeforhold, der passerer gennem A og vinkelret på BC
Hældning af linjesegment AC
Højdehældning Vinkelret på BC
Højdeforhold, der passerer gennem B og vinkelret på AC
Løsning af Eqns (1), (2) vi ankommer til orthocenterets koordinater O
Koordinater for orthocenter
Verifikation:
Hældning af
Ligning af højde CF
Orthocenter koordinater
Svar:
orthocenter:
Forklaring:
Jeg har udarbejdet den semi-generelle sag her. (Http://socratic.org/questions/what-is-the-orthocenter-of-a-triangle-with-corners-at-7-3-4-4 -and-2-8)
Konklusionen er trekantens orthocenter med hjørner
Lad os teste det ved at anvende det på denne trekant og sammenligne resultatet med det andet svar.
Først oversætter vi (5, 6) til oprindelsen og giver de to andre oversatte hjørner:
Vi anvender formlen i det oversatte rum:
Nu oversætter vi tilbage til vores resultat:
orthocenter:
Det svarer til det andet svar!
Basen af en trekant af et givet område varierer omvendt som højden. En trekant har en base på 18cm og en højde på 10cm. Hvordan finder du højden på en trekant med samme område og med en base på 15cm?
Højde = 12 cm Området af en trekant kan bestemmes med ligningsområdet = 1/2 * base * højde Find området for den første trekant ved at erstatte målingen af trekanten i ligningen. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 Lad højden af den anden trekant = x. Så området ligningen for den anden trekant = 1/2 * 15 * x Da områdene er ens, 90 = 1/2 * 15 * x gange begge sider ved 2. 180 = 15x x = 12
Hvad er orthocenteret af en trekant med hjørner på (1, 2), (5, 6) og (4, 6) #?
Trekantens orthocenter er: (1,9) Lad triangleABC være trekanten med hjørner ved A (1,2), B (5,6) og C (4,6) Lad bar (AL), stang (BM) og bar (CN) er højderne på side bar (BC), bar (AC) og bar (AB). Lad (x, y) være skæringspunktet mellem tre højder. Hældning af stang (AB) = (6-2) / (5-1) = 1 => Hældning af stang (CN) = - 1 [:. højde] og bar (CN) passerer gennem C (4,6) Så, equn. af bar (CN) er: y-6 = -1 (x-4) dvs. farve (rød) (x + y = 10 .... til (1) Nu, hældning af stang (AC) = ) / (4-1) = 4/3 => Hældning af stang (BM) = - 3/4 [:. Højde] og sta
Hvad er orthocenteret af en trekant med hjørner på (1, 3), (5, 7) og (2, 3) #?
Ortocentre i trekant ABC er H (5,0) Lad trianglen være ABC med hjørner ved A (1,3), B (5,7) og C (2,3). så er hældningen af "line" (AB) = (7-3) / (5-1) = 4/4 = 1 Lad bar (CN) _ | _bar (AB):. Hældningen af "linje" CN = -1 / 1 = -1, og den passerer gennem C (2,3). : .Equn. af "line" CN er: y-3 = -1 (x-2) => y-3 = -x + 2 ie x + y = 5 ... til (1) Nu er hældningen af "linje" (BC) = (7-3) / (5-2) = 4/3 Lad bar (AM) _ | _bar (BC):. Hældningen af "linje" AM = -1 / (4/3) = - 3/4, og den passerer gennem A (1,3). : .Equn. af "line" A