Svar:
Se nedenunder.
Forklaring:
Afledet af hastighed er acceleration, det vil sige at hældningen af hastighedstidsgrafen er accelerationen.
Med afledet af hastighedsfunktionen:
#v '= 2 - 2sin (2t) #
Vi kan erstatte
#a = 2 - 2sin (2t) #
Nu indstillet
# 0 = 2 - 2sin (2t) #
# -2 = -2sin (2t) #
# 1 = synd (2t) #
# pi / 2 = 2t #
#t = pi / 4 #
Da vi ved det
Da accelerationen er afledet af hastigheden,
Så baseret på hastighedsfunktionen
Accelerationsfunktionen skal være
På tidspunktet
Hvilket giver
Sinefunktionen er lig med +1, når dens argument er
Så har vi
Vis at cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jeg er lidt forvirret, hvis jeg laver Cos²4π / 10 = cos² (π-6π / 10) og cos²9π / 10 = cos² (π-π / 10), bliver den negativ som cos (180 ° -theta) = - costheta in den anden kvadrant. Hvordan går jeg med at bevise spørgsmålet?
Se nedenfor. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Hvad er størrelsen af accelerationen af blokken, når den er ved punktet x = 0,24 m, y = 0,52 m? Hvad er retningen for accelerationen af blokken, når den er ved punktet x = 0,24m, y = 0,52m? (Se detaljer).
Da xand y er ortogonale til hinanden, kan de behandles uafhængigt. Vi ved også, at vecF = -gradU: .x-komponenten af todimensionelle kraft er F_x = - (delU) / (delx) F_x = -del / (delx) [(5,90 Jm ^ -2) x ^ 2- 3x = -11.80x => a_x = -11.80 / 0.0400x => a_x = -295x At Det ønskede punkt a_x = -295xx0.24 a_x = -70.8 ms ^ -2 Tilsvarende y-komponent af kraft er F_y = -del / (dely) [(5,90 Jm ^ -2) x ^ 2- (3,65 Jm ^ -3 = y ^ 3] F_y = 10.95y ^ 2 y-komponent af acceleration F_y = ma_ = 10,95y ^ 2 0,0400a_y = 10,95y ^ 2 => a_y = 10,95 / 0,0400y ^ 2 => a_y = 27,375y ^ 2 På det ønskede punkt a_y = 27
En partikel P bevæger sig i en ret linje fra punkt O med hastigheden 2m / s accelerationen af P på tidspunktet t efter at have forladt O er 2 * t ^ (2/3) m / s ^ 2 Vis at t ^ (5/3 ) = 5/6 Når hastigheden af P er 3m / s?
"Se forklaring" a = {dv} / {dt} => dv = a dt => v - v_0 = 2 int t ^ (2/3) dt => v = v_0 + 2 (3/5) t ^ 5/3) + C t = 0 => v = v_0 => C = 0 => 3 = 2 + (6/5) t ^ (5/3) => 1 = (6/5) t ^ / 3) => 5/6 = t ^ (5/3)