Svar:
Et punkt, hvor derivatet er
Forklaring:
har
Men
Det er heller ikke rigtigt, at hver ekstrem forekommer hvor
For eksempel begge
Det er rigtigt, at hvis
Gregory tegnet et rektangel ABCD på et koordinatplan. Punkt A er ved (0,0). Punkt B er ved (9,0). Punkt C er ved (9, -9). Punkt D er ved (0, -9). Find længden af side cd?
Side CD = 9 enheder Hvis vi ignorerer y-koordinaterne (den anden værdi i hvert punkt), er det let at fortælle det, da side CD starter ved x = 9 og slutter ved x = 0, er absolutværdien 9: | 0 - 9 | = 9 Husk at løsningerne på absolutte værdier altid er positive Hvis du ikke forstår hvorfor det er, kan du også bruge afstandsformlen: P_ "1" (9, -9) og P_ "2" (0, -9 ) I den følgende ligning er P_ "1" C og P_ "2" er D: sqrt (x_ "2" -x_ "1") ^ 2+ (y_ "2" -y_ "1") ^ 2 sqrt (± 9) ^ 2 + (-9 - (-9)) sqrt (
Et objekt hviler på (6, 7, 2) og accelererer konstant med en hastighed på 4/3 m / s ^ 2, når det bevæger sig til punkt B. Hvis punkt B er ved (3, 1, 4), hvor lang tid vil det tage for objektet at nå punkt B? Antag at alle koordinater er i meter.
T = 3,24 Du kan bruge formlen s = ud + 1/2 (ved ^ 2) du er starthastighed s er afstandsrejse t er tid a er acceleration Nu starter den fra hvile, så starthastigheden er 0 s = 1/2 (ved ^ 2) For at finde s mellem (6,7,2) og (3,1,4) Vi bruger afstandsformel s = sqrt ((6-3) ^ 2 + (7-1) ^ 2 + (2 -4) ^ 2) s = sqrt (9 + 36 + 4) s = 7 Acceleration er 4/3 meter pr. Sekund pr. Sekund 7 = 1/2 ((4/3) t ^ 2) 14 * ) = t ^ 2 t = sqrt (10,5) = 3,24
Punkt A er ved (-2, -8), og punkt B er ved (-5, 3). Punkt A drejes (3pi) / 2 med uret om oprindelsen. Hvad er de nye koordinater for punkt A og af hvor meget har afstanden mellem punkt A og B ændret sig?
Lad indledende polarkoordinat af A, (r, theta) givet den første kartesiske koordinat af A, (x_1 = -2, y_1 = -8) Så vi kan skrive (x_1 = -2 = rcosthetaandy_1 = -8 = rsintheta) Efter 3pi / 2 med uret rotation den nye koordinat af A bliver x_2 = rcos (-3pi / 2 + theta) = rcos (3pi / 2-theta) = - rsintheta = - (- 8) = 8 y_2 = rsin (-3pi / 2 + theta ) = - rsin (3pi / 2-theta) = rcostheta = -2 Indledende afstand for A fra B (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) = sqrt130 endelig afstand mellem ny position A 8, -2) og B (-5,3) d_2 = sqrt (13 ^ 2 + 5 ^ 2) = sqrt194 Så Forskel = sqrt194-sqrt130 også se linket http: