Svar:
Forklaring:
Okay. Vi har fået:
Lad os ignorere
Ifølge den pythagoranske identitet,
Nu da vi ved det, kan vi skrive:
I grader,
Svar:
Forklaring:
Givet,
Forenkle (1-cos theta + sin theta) / (1 + cos theta + sin theta)?
= sin (theta) / (1 + cos (theta)) (1-cos (theta) + sin (theta)) / (1 + cos (theta) + sin (theta)) = (1-cos (theta) + synd (theta)) * (1 + cos (theta) + sin (theta)) / (1 + cos (theta) + sin (theta)) 2 = ((1 + sin (theta) 2 (theta)) (1 + cos ^ 2 (theta) + sin ^ 2 (theta) + 2 sin (theta) +2 cos (theta) + 2 sin (theta) cos (theta)) = synd (theta)) 2-cos ^ 2 (theta)) / (2 + 2 sin (theta) +2 cos (theta) + 2 sin (theta) cos (theta)) = ((1 + sin (theta) ) ^ 2-cos ^ 2 (theta)) / (2 (1 + cos (theta)) + 2 sin (theta) (1 + cos (theta)) = (1/2) ((1 + sin (theta) ) ^ 2-cos ^ 2 (theta)) / (1 + cos (theta)) (1 + sin (theta)) = (1/2) (1 +
Vis at, (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos n * theta / 2)?
Se nedenfor. Lad 1 + costheta + isintheta = r (cosalpha + isinalpha), her r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2 ) -2) = 2cos (theta / 2) og tanalpha = sintheta / (1 + costheta) == (2sin (theta / 2) cos (theta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) eller alfa = theta / 2 derefter 1 + costheta-isintheta = r (cos (-alpha) + isin (-alpha)) = r (cosalpha-isinalpha) og vi kan skrive (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n ved anvendelse af DE MOivre's sætning som rnn (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r ^ ncosna
Hvordan beviser du (1 + sin theta) (1-sin theta) = cos ^ 2 theta?
Bevis under (1 + sintheta) (1-sintheta) = 1-sin ^ 2theta = sin ^ 2theta + cos ^ 2theta-sin ^ 2theta = cos ^ 2theta