Svar:
Det tager bolden
Forklaring:
Til dette problem vil vi overveje at ingen friktion er involveret
Lad os overveje den højde, hvorfra bolden blev lanceret som
Den eneste kraft, der anvendes på bolden, er dens egen vægt:
derfor, hvis vi overvejer
At vide det
Den konstante værdi findes med
Nu ved det
Denne gang,
Nu ønsker vi at finde den tid, det tager bolden at stige til sin maksimale højde, stoppe og derefter falde tilbage til starthøjden. Det gør vi ved at løse følgende ligning:
Et tydeligt svar er
Det andet svar er:
På en skriftlig del af hendes kørselstest svarede Sarah 84% af spørgsmålene korrekt. Hvis Sarah besvarede 42 spørgsmål korrekt, hvor mange spørgsmål var der på køreprøven?
Det samlede antal spørgsmål på kørselsfarven (blå) (= 50 Lad det samlede antal spørgsmål være = x Som svar på spørgsmålet: Sara svarede 84% af de samlede spørgsmål korrekt = 84% * (x) = 84 / 100 * (x) Nu svarer denne 84% korrekt til 42 spørgsmål, 84/100 * (x) = 42 x = (42 * 100) / 84 x = (4200) / 84 farve (blå) = 50
Hvad er forløbet af antallet af spørgsmål for at nå et andet niveau? Det ser ud som om antallet af spørgsmål stiger hurtigt, da niveauet stiger. Hvor mange spørgsmål til niveau 1? Hvor mange spørgsmål til niveau 2 Hvor mange spørgsmål til niveau 3 ......
Tja, hvis du ser i FAQ finder du, at tendensen for de første 10 niveauer er givet: Jeg antager, at hvis du virkelig ville forudsige højere niveauer, passer jeg til antallet af karma-punkter i et emne til det niveau du nåede , og fik: hvor x er niveauet i et givet emne. På samme side, hvis vi antager, at du kun skriver svar, så får du bb (+50) karma for hvert svar du skriver. Nu, hvis vi regraferer dette som antallet af svar skrevet i forhold til niveauet, så: Husk på, at dette er empiriske data, så jeg siger ikke, at dette faktisk er, hvordan det er. Men jeg synes det er en god
Din lærer giver dig en prøve på 100 point, der indeholder 40 spørgsmål. Der er 2 point og 4 point spørgsmål på testen. Hvor mange af hver type spørgsmål er på prøve?
Antal 2 mark spørgsmål = 30 Antal 4 mark spørgsmål = 10 Lad x være antallet af 2 mark spørgsmål Lad være med at være antallet af 4 mark spørgsmål x + y = 40 ------------- - (1) 2x + 4y = 100 --------------- (2) Løs ligning (1) for yy = 40-x Erstatter y = 40-x i ligning (2) 2x +4 (40-x) = 100 2x + 160-4x = 100 2x -4x = 100-160 -2x = -60 x = (- 60) / (- 2) = 30 Substitutent x = 30 i ligning (1 ) 30 + y = 40 y = 40-30 = 10 Antal 2 mark spørgsmål = 30 Antal 4 mark spørgsmål = 10