Svar:
Nogen
Forklaring:
Noter det
Hvis
#a <b # og# b <c # derefter#a <c #
I vores eksempel:
# -n <x # og#x <n "" # så# -n <n #
Tilføjelse
# 0 <2n #
Derefter opdele begge sider af
# 0 <n #
Så hvis vi gør denne ulighed falsk, så må den givne sammensatte ulighed også være falsk, hvilket betyder, at der ikke er nogen egnet
Så bare sætte
# 0 <x <0 "" # har ingen løsninger.
Der er en brøkdel sådan, at hvis 3 tilføjes tælleren, vil dens værdi være 1/3, og hvis 7 trækkes fra nævneren, vil dens værdi være 1/5. Hvad er fraktionen? Giv svaret i form af en brøkdel.
1/12 f = n / d (n + 3) / d = 1/3 => n = d / 3 - 3 n / (d-7) = 1/5 => n = d / 5 - 7/5 => d = 3 = 3 = d / 5 - 7/5 => 5 d - 45 = 3 d - 21 "(multiplicere begge sider med 15)" => 2 d = 24 => d = 12 => n = 1 => f = 1/12
Hvordan skriver du den sammensatte ulighed som en absolut værdi ulighed: 1,3 h 1,5?
| h-1.4 | <= 0,1 Find midtpunktet mellem ekstremernes ekstremer og danner ligestillingen omkring det for at reducere det til enkelt ulighed. midtpunktet er 1,4 så: 1,3 <= h <= 1,5 => -0,1 <= h-1,4 <= 0,1 => | h-1,4 | <= 0,1
Brug diskriminanten til at bestemme antallet og typen af løsninger ligningen har? x ^ 2 + 8x + 12 = 0 A. ingen reel løsning B. en ægte løsning C. to rationelle løsninger D. to irrationelle løsninger
C. to rationelle løsninger Løsningen til den kvadratiske ligning a * x ^ 2 + b * x + c = 0 er x = (-b + - sqrt (b ^ 2-4 * a * c)) / (2 * a In Problemet under overvejelse, a = 1, b = 8 og c = 12 Substituting, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 eller x = - sqrt (64 - 48)) / (2x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 og x = (-8-4) / 2 x = (- 4) / 2 og x = (-12) / 2 x = -2 og x = -6