Spørgsmål # 36b8c

Spørgsmål # 36b8c
Anonim

Ved at multiplicere ud, #H (x) = (x-sqrt {x}) (x + sqrt {x}) = x ^ 2-x #

Ved Power Rule, #H '(x) = 2x-1 #.

Jeg håber, at dette var nyttigt.

Hvis du bemærker det #H (x) # er forskellen på perfekte firkanter så er problemet meget lettere.

Hvis du ikke gør det, kan du bruge Produktregel.

#H '(x) = uv' + vu '#

#H (x) = uv = (x-sqrt (x)) (x + sqrt (x)) = (x-x ^ (1/2)) (x + x ^ (1/2)) #

#H '(x) = (xx ^ (1/2)) (1 + 1 / 2x ^ (- 1/2)) + (x + x ^ (1/2)) (1-1 / 2x ^ (-1/2)) #

#H '(x) = (xx ^ (1/2)) (1 + 1 / (2x ^ (1/2))) + (x + x ^ (1/2)) (1-1 / (2x ^ (1/2))) #

#H '(x) = x + x / (2x ^ (1/2)) - x ^ (1/2) -x ^ (1/2) / (2x ^ (1/2)) + xx / (2x ^ (1/2)) x ^ (1/2) -x ^ (1/2) / (2x ^ (1/2)) #

#H '(x) = x + x / (2x ^ (1/2)) - x ^ (1/2) -1 / 2 + xx / (2x ^ (1/2)) x ^ (1 / 2) -1/2 #

#H '(x) = x + x / (2x ^ (1/2)) - x ^ (1/2) + xx / (2x ^ (1/2)) x ^ (1/2) -1 #

#H '(x) = x + x / (2x ^ (1/2)) + x-x / (2x ^ (1/2)) - 1 #

#H '(x) = x + x-1 #

#H '(x) = 2x-1 #