Svar:
Forklaring:
Find derivatet:
ved produktreglen og forskellige forenklinger.
Find nuller:
Roten af dette polynom er
Find hvor
Siden division by
Domænet for f (x) er sæt af alle reelle værdier undtagen 7, og domænet for g (x) er sætet af alle reelle værdier bortset fra -3. Hvad er domænet for (g * f) (x)?
Alle reelle tal undtagen 7 og -3, når du multiplicerer to funktioner, hvad laver vi? vi tager f (x) -værdien og multiplicerer den med g (x) -værdien, hvor x skal være det samme. Men begge funktioner har begrænsninger, 7 og -3, så produktet af de to funktioner skal have * begge * begrænsninger. Normalt når de har funktioner på funktioner, hvis de tidligere funktioner (f (x) og g (x)) havde begrænsninger, bliver de altid taget som en del af den nye begrænsning af den nye funktion eller deres funktion. Du kan også visualisere dette ved at lave to rationelle funktione
Funktionen f er defineret af f: x = 6x-x ^ 2-5 Find sæt værdier af x for hvilke f (x) <3 Jeg har fundet x-værdier, der er 2 og 4 Men jeg ved ikke hvilken retning ulighedstegn skal være?
X <2 "eller" x> 4> "kræver" f (x) <3 "ekspression" f (x) <0 rArr-x ^ 2 + 6x-5 <3 rArr-x ^ 2 + 6x-8 <0larrcolor (blå) "faktor den kvadratiske" rArr- (x ^ 2-6x + 8) <0 "faktorerne for + 8 som summen til - 6 er - 2 og - 4" rArr- (x-2) (x-4 ) <0 "løse" (x-2) (x-4) = 0 x-2 = 0rArrx = 2 x-4 = 0rArrx = 4 rArrx = 2, x = 4larrcolor (blå) "er x- koefficienten for "x ^ 2" termen "<0rArrnnn rArrx <2" eller "x> 4 x i (-oo, 2) uu (4 oo) larrcolor (blå)" i interval notation "graf
Hældningen af en vandret linje er nul, men hvorfor er hældningen af en lodret linje udefineret (ikke nul)?
Det er ligesom forskellen mellem 0/1 og 1/0. 0/1 = 0, men 1/0 er udefineret. Hældningen m af en linje, der går gennem to punkter (x_1, y_1) og (x_2, y_2) er givet ved formlen: m = (Delta y) / (Delta x) = (y_2 - y_1) / (x_2 - x_1) Hvis y_1 = y_2 og x_1! = X_2 så er linjen vandret: Delta y = 0, Delta x! = 0 og m = 0 / (x_2 - x_1) = 0 Hvis x_1 = x_2 og y_1! = Y_2 så er linjen lodret: Delta y! = 0, Delta x = 0 og m = (y_2 - y_1) / 0 er udefineret.