Svar:
Forklaring:
Ved hjælp af kædelegemet kan vi behandle
Kæde regel:
Lade
Vis at cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jeg er lidt forvirret, hvis jeg laver Cos²4π / 10 = cos² (π-6π / 10) og cos²9π / 10 = cos² (π-π / 10), bliver den negativ som cos (180 ° -theta) = - costheta in den anden kvadrant. Hvordan går jeg med at bevise spørgsmålet?
Se nedenfor. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Hvordan finder du derivatet af cos ((1-e ^ (2x)) / (1 + e ^ (2x)))?
F (x) = (4e ^ (2x)) / (1 + e ^ (2x)) ^ 2sin ((1-e ^ (2x)) / (1 + e ^ (2x))) Vi har at gøre med kvotientreglen inde i kædelegemet Kædelegemet for cosinus cos (r) rArr s '* - sin (s) Nu skal vi gøre kvotientreglen s = (1-e ^ (2x)) / (1 + e ^ 2x)) dy / dxu / v = (u'v-v'u) / v ^ 2 Regel til udledning e Regel: e ^ u rArr u'e ^ u Afled både de øverste og nederste funktioner 1-e ^ (2x ) rArr 0-2e ^ (2x) 1 + e ^ (2x) rArr 0 + 2e ^ (2x) Sæt den i kvotientreglen s '= (u'v-v'u) / v ^ 2 = (- 2e ^ (2x) (1 + e ^ (2x)) - 2e ^ (2x) (1-e ^ (2x))) / (1 + e ^ (2x)) 2 Simpelthen s
Hvordan finder du derivatet af G (x) = (4-cos (x)) / (4 + cos (x))?
(8sinx) / (4 + cosx) ^ 2 Derivatet af kvotienten defineres som følger: (u / v) '= (u'v-v'u) / v ^ 2 Lad u = 4-cosx og v = 4 + cosx At kende den farve (blå) ((d (cosx)) / dx = -sinx) Lad os finde u 'og v' u '= (4-cosx)' = 0-farve (blå) ) = sinx V '= (4 + cosx)' = 0 + farve (blå) ((- sinx)) = - sinx G '(x) = (u'v-v'u) / v ^ 2 G' (x) = (sinx (4 + cosx) - (- sinx) (4-cosx)) / (4 + cosx) ^ 2G '(x) = (4sinx + sinxcosx + 4sinx-sinxcosx) / (4 + cosx ) ^ 2G '(x) = (8sinx) / (4 + cosx) ^ 2