Svar:
Forklaring:
Vi har at gøre med kvotientreglen inde i kædelegemet
Kæde regel for cosine
Nu skal vi gøre kvotientreglen
Regel for udledning e
Herske:
Afled både top- og bundfunktionerne
Sæt det i kvotientreglen
ganske enkelt
Sæt det nu tilbage i derivatligningen for
Vis at cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jeg er lidt forvirret, hvis jeg laver Cos²4π / 10 = cos² (π-6π / 10) og cos²9π / 10 = cos² (π-π / 10), bliver den negativ som cos (180 ° -theta) = - costheta in den anden kvadrant. Hvordan går jeg med at bevise spørgsmålet?
Se nedenfor. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Hvordan finder du derivatet af Cos ^ -1 (3 / x)?
= (3 / x ^ 2) / (sqrt (1- (3 / x) ^ 2)) Vi skal vide, at (arccos (x)) '= - (1) / (sqrt )) Men i dette tilfælde har vi en kæderegel at overholde, hvor vi sætter u = 3 / x = 3x ^ -1 (arccos (u)) '= - (1) / (sqrt (1-u ^ 2) ) * u 'Vi skal kun finde dig', u '= 3 (-1 * x ^ (- 1-1)) = - 3x ^ -2 = -3 / x ^ 2 Vi vil så have, (arccos (3 / x)) = = (3 / x ^ 2) / (sqrt (1- (3 / x) ^ 2)) = (3 / x ^ 2) / ) ^ 2))
Hvordan finder du derivatet af G (x) = (4-cos (x)) / (4 + cos (x))?
(8sinx) / (4 + cosx) ^ 2 Derivatet af kvotienten defineres som følger: (u / v) '= (u'v-v'u) / v ^ 2 Lad u = 4-cosx og v = 4 + cosx At kende den farve (blå) ((d (cosx)) / dx = -sinx) Lad os finde u 'og v' u '= (4-cosx)' = 0-farve (blå) ) = sinx V '= (4 + cosx)' = 0 + farve (blå) ((- sinx)) = - sinx G '(x) = (u'v-v'u) / v ^ 2 G' (x) = (sinx (4 + cosx) - (- sinx) (4-cosx)) / (4 + cosx) ^ 2G '(x) = (4sinx + sinxcosx + 4sinx-sinxcosx) / (4 + cosx ) ^ 2G '(x) = (8sinx) / (4 + cosx) ^ 2