To hjørner af en trekant har vinkler på (3 pi) / 8 og pi / 3. Hvis den ene side af trekanten har en længde på 6, hvad er den længste mulige omkreds af trekanten?

To hjørner af en trekant har vinkler på (3 pi) / 8 og pi / 3. Hvis den ene side af trekanten har en længde på 6, hvad er den længste mulige omkreds af trekanten?
Anonim

Svar:

Største mulige område af trekanten er 18.1531

Forklaring:

Givet er de to vinkler # (3pi) / 8 # og # Pi / 3 # og længden 6

Den resterende vinkel:

# = pi - (((3pi) / 8) + pi / 3) = (7pi) / 24 #

Jeg antager, at længden AB (1) er modsat den mindste vinkel.

Brug af ASA

Areal# = (C ^ 2 * sin (A) * sin (B)) / (2 * sin (C) #

Areal# = (6 ^ 2 * sin (pi / 3) * sin ((3pi) / 8)) / (2 * sin ((7pi) / 24)

Areal#=18.1531#