For det første kan vi kalde det mindste af de ulige heltal
Så finder vi det næste ulige heltal
Nå, ulige heltal kommer hvert andet tal, så lad os sige, at vi starter fra 1. Vi skal tilføje 2 flere til 1 for at komme til det ulige tal
Så midten af vores sammenhængende ulige heltal kan udtrykkes som
Vi kan anvende den samme metode for det sidste ulige heltal, det er 4 mere end det første ulige heltal, så det kan ses som
Vi finder summen til at være 57, så vi skaber ligningen
Kombiner lignende udtryk:
Trække fra:
Dele:
Så vores heltal er
Tjek dem virkelig hurtigt, og de arbejder!
Spørgsmålet spørger om det mindste af heltalene, hvilket ville være 17
Produktet af to på hinanden følgende heltal er 47 mere end det næste på hinanden følgende heltal. Hvad er de to heltal?
-7 og -6 ELLER 7 og 8 Lad heltalene være x, x + 1 og x + 2. Så x (x + 1) - 47 = x + 2 Løsning for x: x ^ 2 + x - 47 = x + 2 x ^ 2 - 49 = 0 (x + 7) (x - 7) = 0 x = -7 og 7 Kontrollerer tilbage, begge resultater arbejder, så de to heltal er enten -7 og -6 eller 7 og 8. Forhåbentlig hjælper!
Hvad er tre på hinanden følgende ulige heltal sådan, at summen af det midterste og største heltal er 21 mere end det mindste heltal?
De tre på hinanden følgende ulige heltal er 15, 17 og 19 For problemer med "på hinanden følgende jævne (eller ulige) cifre" er det værd at den ekstra besvær med at beskrive "fortløbende" cifre nøjagtigt. 2x er definitionen af et jævnt tal (et tal dividerbart med 2) Det betyder, at (2x + 1) er definitionen af et ulige tal. Så her er "tre på hinanden følgende ulige tal" skrevet på en måde, der er langt bedre end x, y, z eller x, x + 2, x + 4 2x + 1larr mindste heltal (det første ulige tal) 2x + 3larr midtertal det
"Lena har 2 på hinanden følgende heltal.Hun bemærker, at deres sum er lig med forskellen mellem deres kvadrater. Lena vælger yderligere 2 på hinanden følgende heltal og bemærker det samme. Bevis algebraisk, at dette gælder for 2 fortløbende heltal?
Venligst henvis til forklaringen. Husk at de på hinanden følgende heltal adskiller sig med 1. Derfor, hvis m er et helt tal, skal det efterfølgende heltal være n + 1. Summen af disse to heltal er n + (n + 1) = 2n + 1. Forskellen mellem deres kvadrater er (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, som ønsket! Føl Mathens Glæde.!