Svar:
Forklaring:
Lad os tælle tallene der forekommer efter
-
Der er ingen andre tal startende
#421# . -
Der er endnu et nummer, der starter
#42# , nemlig#4231# . -
Der starter to tal
#43# , nemlig#4312# ,#4321# .
Så følgende
Så
Tom skrev 3 på hinanden følgende naturlige tal. Fra disse tal 'kubus sum tog han det tredobbelte produkt af disse tal og divideret med det aritmetiske gennemsnit af disse tal. Hvilket tal skrev Tom?
Det endelige tal, som Tom skrev, var farve (rød) 9 Bemærk: Meget af dette er afhængig af, at jeg korrekt forstår betydningen af forskellige dele af spørgsmålet. 3 på hinanden følgende naturlige tal Jeg antager, at dette kunne være repræsenteret af sætet {(a-1), a, (a + 1)} for nogle a i NN disse tales kubsummen antager jeg, at dette kunne repræsenteres som farve (hvid) "XXX") (a-1) ^ 3 + a ^ 3 + (a + 1) ^ 3 farve (hvid) ("XXXXX") = a ^ 3-3a ^ 2 + 3a-1 farve XXXXXx ") + a ^ 3 farve (hvid) (" XXXXXx ") ul (+ a ^ 3 + 3a ^ 2 + 3a +
Du har håndklæder af tre størrelser. Længden af den første er 3/4 m, hvilket udgør 3/5 af længden af den anden. Længden af det tredje håndklæde er 5/12 af summen af længderne af de første to. Hvilken del af den tredje håndklæde er den anden?
Forholdet mellem anden til tredje håndklæde længde = 75/136 Længde af første håndklæde = 3/5 m Længde af andet håndklæde = (5/3) * (3/4) = 5/4 m Summen af de to første håndklæder = 3/5 + 5/4 = 37/20 Længde af det tredje håndklæde = (5/12) * (37/20) = 136/60 = 34/15 m Forholdet mellem anden til tredje håndklæde længde = (5/4 ) / (34/15) = (5 * 15) / (34 * 4) = 75/136
En afbalanceret håndtag har to vægte på den, den første med masse 7 kg og den anden med masse 4 kg. Hvis den første vægt er 3 m fra vinklen, hvor langt er den anden vægt fra vinklen?
Vægt 2 er et øjeblik på 21 (7 kg xx3m) Vægt 2 skal også have et øjeblik på 21 B) 21/4 = 5,25 m Strengt taget skal kg omdannes til Newton i både A og B, fordi Moments måles i Newton Meters, men Gravitational Constants vil annullere ud i B, så de blev udeladt for enkelhedens skyld