
Når du overvejer forholdet mellem to former, er det nyttigt at gøre det fra begge standpunkter, dvs. nødvendig vs. tilstrækkelig.
Nødvendig -
Tilstrækkelig - Kvaliteten af
Spørgsmål du måske vil spørge:
- Kan en trapezoid eksistere uden at have en quadrilateral egenskaber?
- Er kvaliteterne af et quadrilateral tilstrækkeligt til at beskrive en trapezoid?
Nå, fra disse spørgsmål har vi:
- Nej. En trapezoid er defineret som en firkant med to parallelle sider. Derfor er kvaliteten af "quadrilateral" nødvendig, og denne betingelse er tilfreds.
- Nej. En hvilken som helst anden form kan have fire sider, men hvis det ikke har (i det mindste) to parallelle sider, det kan ikke være en trapezoid. En nem modeksempel er a boomerang, som har Nemlig fire sider, men ingen af dem er parallelle. Derfor beskriver kvaliteterne i et firkantet ikke tilstrækkeligt en trapezoid, og denne tilstand er ikke tilfreds.
Nogle skøre eksempler på quadrilaterals:
Det betyder, at et trapezium er for specifikt af et firkant, der kun har kvaliteten af "firkantet", garanterer ikke kvaliteten af "trapezium".
Samlet set en trapezoid er en quadilateral, men en firdobbelt ikke skal være en trapezoid.
Det samlede område på to firkanter er 20 kvadratcentimeter. Hver side af en firkant er dobbelt så lang som en side af den anden firkant. Hvordan finder du længderne af siderne på hver firkant?

Firkanterne har sider på 2 cm og 4 cm. Definer variabler for at repræsentere siderne af kvadraterne. Lad siden af det mindre firkant være x cm Siden af det større firkant er 2x cm Find deres områder i form af x Mindre firkant: Område = x xx x = x ^ 2 Større firkant: Område = 2x xx 2x = 4x ^ 2 Summen af arealerne er 20 cm ^ 2 x ^ 2 + 4x ^ 2 = 20 5x ^ 2 = 20 x ^ 2 = 4 x = sqrt4 x = 2 Det mindre firkant har sider på 2 cm Den større firkant har sider på 4 cm Områder er: 4cm ^ 2 + 16cm ^ 2 = 20cm ^ 2
Længden af hver side af firkant A øges med 100 procent for at gøre firkant B. Derefter øges hver side af firkanten med 50 procent for at gøre firkant C. Ved hvilken procent er arealet af firkant C større end summen af arealerne af kvadrat A og B?

Område C er 80% større end område af A + område af B Definer som måleenhed længden af den ene side af A. Område A = 1 ^ 2 = 1 sq.unit Længden af sider af B er 100% mere end længden af sider af a rarr længden af sider af b = 2 enheder areal af b = 2 ^ 2 = 4 kvm enheder. Længden af siderne af C er 50% mere end længden af siderne af b rarr længden af sider af c = 3 enheder areal på c = 3 ^ 2 = 9 sq.units område af c er 9- (1 + 4) = 4 m² enheder større end de kombinerede områder af A og B. 4 kvadrat enheder repræsenterer 4 / (
Omkredsen af en firkant er 12 cm større end en anden firkant. Dets område overstiger arealet af det andet torv med 39 kvm. Hvordan finder du omkredsen af hver firkant?

32cm og 20cm Lad side af større firkant være a og mindre firkant være b 4a - 4b = 12 så a - b = 3 a ^ 2 - b ^ 2 = 39 (a + b) (ab) = 39 dividere de 2 ligninger vi få a + b = 13 nu tilføjer a + b og ab, vi får 2a = 16 a = 8 og b = 5 omkredsene er 4a = 32cm og 4b = 20cm