Svar:
Betydningen er
Forklaring:
Summen af vilkårene er
For Standardafvigelse skal man finde gennemsnittet af kvadrater afvigelserne af termerne fra middel og derefter tage deres kvadratrød.
Afvigelserne er
og summen af deres kvadrater er
Derfor er standardafvigelsen
Følgende data viser antallet af søvnforløb, der er opnået i løbet af en nylig aften for en stikprøve på 20 arbejdere: 6,5,10,5,6,9,9,5,9,5,8,7,8,6, 9,8,9,6,10,8. Hvad er gennemsnittet? Hvad er variansen? Hvad er standardafvigelsen?
Gennemsnit = 7,4 Standardafvigelse ~ ~ 1.715 Variance = 2.94 Middelværdien er summen af alle datapunkter divideret med antal datapunkter. I dette tilfælde har vi (5 + 5 + 5 + 5 + 6 + 6 + 6 + 6 + 7 + 8 + 8 + 8 + 8 + 9 + 9 + 9 + 9 + 9 + 10 + 10) / 20 = 148/20 = 7.4 Variansen er "gennemsnittet af de kvadratiske afstande fra middelværdien." http://www.mathsisfun.com/data/standard-deviation.html Hvad betyder det, at du trækker hvert datapunkt fra middelværdien, firkantet svarene, så tilføj dem alle sammen og divider dem med antallet af datapunkter. I dette spørgsmål ser de
Hvad fortæller standardafvigelsen og rækkevidden dig om et datasæt, i modsætning til hvad gennemsnittet fortæller dig?
SD: Det giver dig en numerisk værdi om variationen af dataene. Område: Det giver dig de maksimale og minimale værdier af alle data. Betydning: en pontuel værdi, der repræsenterer gennemsnitsværdien af data. Representerer ikke den sande i assimetriske distributioner, og den er påvirket af outliers
Antag, at en klasse studerende har en gennemsnitlig SAT matematik score på 720 og en gennemsnitlig verbal score på 640. Standardafvigelsen for hver del er 100. Hvis det er muligt, skal du finde standardafvigelsen for den sammensatte score. Hvis det ikke er muligt, forklar hvorfor.?
141 Hvis X = matematikken og Y = den verbale score, E (X) = 720 og SD (X) = 100 E (Y) = 640 og SD (Y) = 100 Du kan ikke tilføje disse standardafvigelser for at finde standarden afvigelse for den sammensatte score Vi kan dog tilføje variationer. Varians er kvadratet af standardafvigelsen. var (X + Y) = var (X) + var (Y) = SD ^ 2 (X) + SD ^ 2 (Y) = 100 ^ 2 + 100 ^ 2 = 20000 var (X + Y) = 20000, men da vi vil have standardafvigelsen, skal du blot tage kvadratroten af dette nummer. SD (X + Y) = sqrt (var (X + Y)) = sqrt20000 ~~ 141 Således er standardafvigelsen for den sammensatte score for elever i klassen 141